²⁵⁶Md ε decay (77.7 min) 2000Ah02

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Balraj Singh	NDS 141, 327 (2017)	22-Mar-2017

Parent: ²⁵⁶Md: E=0.0; $J^{\pi}=(1^{-})$; $T_{1/2}=77.7 \text{ min } 18$; $Q(\varepsilon)=1970 SY$; $\%\varepsilon+\%\beta^{+}$ decay=90.8 7

 256 Md-J^{π},T_{1/2}: From 256 Md Adopted Levels.

²⁵⁶Md-Q(ε): 1970 *120* (syst,2017Wa10).

²⁵⁶Md-Probable configuration= $v7/2[613] \otimes \pi7/2[514]$ (2000Ah02).

2000Ah02: ²⁵⁶Md formed in ²⁵³Es(α ,n),E=35-45 MeV reaction at the Argonne cyclotron facility. Target was 99.4% enriched. The recoiling Md nuclei were stopped in He gas and collected to impinge on a Pt disk. Measured E γ , I γ , E(x ray), I(x ray), E α , I α , α - γ coin using Si and Ge(Li) detectors.

The Fermium K x-ray energies and intensities were measured by 2000Ah02, 1993Mo18 and 1970Fi12 and 1993Mo18. Values from 2000Ah02 are given here.

²⁵⁶Fm Levels

E(level) [†]	J ^π @
0.0	0^{+}
48.09 17	2+
159.66 23	4+
682.16 15	(2^{+})
725.36 21	(3+)
1326.13 [‡] <i>18</i>	(1^{+})
1360.4 [‡] <i>3</i>	(2 ⁺)
1374.15 [#] 18	(1 ⁻)
1405.22 [#] 21	(2 ⁻)

 † From least-squares fit to $E\gamma$ values.

^{\ddagger} Proposed as member of configuration= $v7/2[613] \otimes v9/2[615]$ (2000Ah02).

[#] Proposed as member of configuration= $\pi 7/2[633] \otimes \pi 7/2[514]$ (2000Ah02).

[@] From Adopted Levels.

ε, β^+ radiations

E(decay)	E(level)	$I\beta^+$ #	$\mathrm{I}\varepsilon^{\dagger \#}$	Log ft	$\mathrm{I}(\varepsilon + \beta^+)^{\dagger \#}$	Comments
(564 <i>SY</i>) (595 <i>SY</i>) (609 <i>SY</i>) (643 <i>SY</i>)	1405.22 1374.15 1360.4 1326.13		5.4 10 4.5 13	6.4 6.2 6.6 6.2	5.4 10 4.5 13	ε K=0.67 4; ε L=0.24 3; ε M+=0.093 13 ε K=0.67 4; ε L=0.235 23; ε M+=0.090 11 ε K=0.68 3; ε L=0.233 21; ε M+=0.090 10 ε K=0.68 3; ε L=0.229 18; ε M+=0.088 9
(1287 [@] SY) (1921 SY) (1970 SY)	682.16 48.09 0.0	0.12	<1.8 58	>7.7 6.6	<1.8 ‡ 58 [‡]	ε K=0.731 5; ε L=0.196 3; ε M+=0.0726 14 av E β =455 53; ε K=0.7436 11; ε L=0.1861 13; ε M+=0.0681 6

 † From Fig. 7 in 2000Ah02, adjusted by the decay branching ratio of 90.8% 7.

[‡] Combined feeding for g.s. and 48.3 level.

[#] Absolute intensity per 100 decays.

[@] Existence of this branch is questionable.

²⁵⁶Md ε decay (77.7 min) 2000Ah02 (continued)

$\gamma(^{256}{\rm Fm})$

I γ normalization: Deduced by evaluator from equating summed γ -transition intensity of 83.6 47 from 1405 level=6% as given in Fig. 7 of 2000Ah02, which is most likely deduced from total measured x-ray intensity, as the the component from β^+ is expected to be negligible.

Fm Kβ₂ x ray: E(x ray)=140.6 2, I(x ray)=57 5 (2000Ah02).

E_{γ}	I_{γ} ‡	E_i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult.	α^{\dagger}	$I_{(\gamma+ce)}$ ‡	Comments
(48.3 3)		48.09	2+	0.0 0+	[E2]	832		α (L)=597 9; α (M)=171.8 24 α (N)=48.9 7; α (O)=12.31 18; α (P)=1.93 3; α (Q)=0.00466 7 E : from Adopted Common
(111.6 2)		159.66	4+	48.09 2+	[E2]	15.96	27 5	$\alpha(L)=11.45 \ 16; \ \alpha(M)=3.30 \ 5 \ \alpha(N)=0.937 \ 14; \ \alpha(O)=0.237 \ 4; \ \alpha(Q)=0.0001575 \ 22 \ I_{(\gamma+ce)}$: from intensity balance at 160 level, value is in relative
								units on the same scale as gamma-ray intensities.
565.8 <i>3</i>	11 2	725.36	(3+)	159.66 4+	[M1,E2]	0.21 16		E _γ : from Adopted Gammas. $\alpha(K)=0.16 \ 13; \ \alpha(L)=0.039 \ 21;$ $\alpha(M)=0.0098 \ 50$
								α (N)=0.0027 14; α (O)=7.2×10 ⁻⁴ 37; α (P)=1.36×10 ⁻⁴ 74;
600.8 4	18 <i>3</i>	1326.13	(1 ⁺)	725.36 (3 ⁺)	[E2]	0.0489		$\alpha(Q)=6.6\times10^{-6}$ 50 $\alpha(K)=0.0285$ 4; $\alpha(L)=0.01493$ 22: $\alpha(M)=0.00400$ 6
								$\begin{array}{l} \alpha(N) = 0.001127 \ 16; \\ \alpha(O) = 0.000291 \ 5; \\ \alpha(P) = 5.18 \times 10^{-5} \ 8; \\ \alpha(O) = 1.442 \times 10^{-6} \ 2I \end{array}$
634.1 [@] 2	94 [@] 10	682.16	(2 ⁺)	48.09 2+	[M1,E2]	0.15 11		$\alpha(Q) = 1.42 \times 10^{-2.1}$ $\alpha(K) = 0.115 \ 90; \ \alpha(L) = 0.028 \ 16;$ $\alpha(M) = 0.0071 \ 37$ $\alpha(N) = 0.0020 \ 11; \ \alpha(O) = 5.2 \times 10^{-4}$ $28; \ \alpha(P) = 9.9 \times 10^{-5} \ 55;$ $\alpha(O) = 4.9 \times 10^{-6} \ 37$
								I _y : intensity divided by 2000Ah02 based on data in 1989Ha10 for ²⁵⁶ Es β^- decay
634.1 ^{@&} 2	25 [@] 10	1360.4	(2+)	725.36 (3+)	[M1,E2]	0.15 11		$\alpha(K)=0.115 \ 90; \ \alpha(L)=0.028 \ 16; \\ \alpha(M)=0.0071 \ 37 \\ \alpha(N)=0.0020 \ 11; \ \alpha(O)=5.2\times10^{-4} \\ 28; \ \alpha(P)=9 \ 9\times10^{-5} \ 55; $
644.0 2	109 9	1326.13	(1+)	682.16 (2 ⁺)	[M1,E2]	0.15 <i>11</i>		$\begin{array}{l} \alpha(Q) = 4.9 \times 10^{-6} \ 37 \\ \alpha(K) = 0.111 \ 86; \ \alpha(L) = 0.027 \ 15; \\ \alpha(M) = 0.0068 \ 36 \\ \alpha(N) = 0.00189 \ 99; \\ \alpha(O) = 5.0 \times 10^{-4} \ 27; \\ \alpha(P) = 9.5 \times 10^{-5} \ 53; \\ \alpha(P) = 4.7 \times 10^{-6} \ 25 \end{array}$
677.3 [@] 2	48 [@] 4	725.36	(3+)	48.09 2+	[M1,E2]	0.129 92		$\alpha(Q) = 4.7 \times 10^{-5.53}$ $\alpha(K) = 0.097 \ 74; \ \alpha(L) = 0.023 \ 13;$

Continued on next page (footnotes at end of table)

Fm Kα₂ x ray: E(x ray)=115.30 8, I(x ray)=266 12 (2000Ah02).

Fm K α_1 x ray: E(x ray)=121.10 8, I(x ray)=409 20 (2000Ah02).

Fm Kβ₁ x ray: E(x ray)=136.0 2, I(x ray)=143 10 (2000Ah02).

				²⁵⁶ Md ε decay (77.7 min) 2000A			2000Ah0	0Ah02 (continued)		
						$\gamma(^{256}{\rm Fm})$ (c	continued)			
E_{γ}	I_{γ} ‡	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult.	α^{\dagger}	Comments		
			_		<u> </u>			$\begin{array}{l} \alpha(M) = 0.0059 \; 31 \\ \alpha(N) = 0.00164 \; 86; \; \alpha(O) = 4.3 \times 10^{-4} \; 23; \\ \alpha(P) = 8.2 \times 10^{-5} \; 46; \; \alpha(Q) = 4.1 \times 10^{-6} \; 30 \\ I_{\gamma}: \text{ intensity divided, based on data in} \\ 1989 \text{Ha10 for } ^{256} \text{Es } \beta^{-} \text{ decay.} \end{array}$		
677.3 ^{@&} 2	@	1360.4	(2 ⁺)	682.16	(2^{+})			E_{γ} : this γ ray is not included in the Adopted detect		
680.0 <i>3</i>	23 2	1405.22	(2 ⁻)	725.36	(3 ⁺)	[E1]	0.00995	$\alpha(K) = 0.00792 \ 12; \ \alpha(L) = 0.001526 \ 22; \ \alpha(M) = 0.000371 \ 6$		
682.1 2	100	682.16	(2+)	0.0	0+	[E2]	0.0372	$\begin{array}{l} \alpha(N)=0.0001028 \ 15; \ \alpha(O)=2.69\times10^{-9} \ 4; \\ \alpha(P)=5.08\times10^{-6} \ 8; \ \alpha(Q)=2.58\times10^{-7} \ 4 \\ \alpha(K)=0.0232 \ 4; \ \alpha(L)=0.01029 \ 15; \\ \alpha(M)=0.00273 \ 4 \\ \alpha(N)=0.000768 \ 11; \ \alpha(O)=0.000199 \ 3; \end{array}$		
692.0 2	73 6	1374.15	(1-)	682.16	(2+)	[E1]	0.00965	α (P)=3.58×10 ⁻⁵ 5; α (Q)=1.111×10 ⁻⁶ 16 α (K)=0.00769 11; α (L)=0.001477 21; α (M)=0.000359 5		
723.0 2	27 3	1405.22	(2-)	682.16	(2+)	[E1]	0.00893	$\alpha(N)=9.95\times10^{-5} \ 14; \ \alpha(O)=2.61\times10^{-5} \ 4; \alpha(P)=4.92\times10^{-6} \ 7; \ \alpha(Q)=2.50\times10^{-7} \ 4 \alpha(K)=0.00712 \ 10; \ \alpha(L)=0.001361 \ 19; \alpha(M)=0.000330 \ 5 (D)=0.17 \ 10^{-5} \ 12 \ (O)=2.40 \ 10^{-5} \ 4 $		
1200.6 5	14 <i>3</i>	1360.4	(2+)	159.66	4+	[E2]	0.01232	$\begin{array}{l} \alpha(N)=9.1/\times10^{-5} \ 13; \ \alpha(O)=2.40\times10^{-5} \ 4; \\ \alpha(P)=4.54\times10^{-6} \ 7; \ \alpha(Q)=2.32\times10^{-7} \ 4 \\ \alpha(K)=0.00903 \ 13; \ \alpha(L)=0.00244 \ 4; \\ \alpha(M)=0.000620 \ 9 \end{array}$		
1278.0 <i>3</i>	15 2	1326.13	(1+)	48.09	2+	[M1,E2]	0.025 15	$\alpha(N)=0.0001733\ 25;\ \alpha(O)=4.53\times10^{-3}\ 7;\alpha(P)=8.48\times10^{-6}\ 12;\ \alpha(Q)=3.72\times10^{-7}\ 6;\alpha(IPF)=2.49\times10^{-6}\ 5\alpha(K)=0.019\ 12;\ \alpha(L)=0.0043\ 22;\alpha(M)=0.00106\ 53\alpha(N)=3.0\times10^{-4}\ 15;\ \alpha(O)=7.8\times10^{-5}\ 39;$		
1312.3 3	33 <i>3</i>	1360.4	(2+)	48.09	2+	[M1,E2]	0.024 13	$\alpha(P)=1.50\times10^{-5} 77; \ \alpha(Q)=8.0\times10^{-7} 47; \alpha(IPF)=2.1\times10^{-5} 13 \alpha(K)=0.018 11; \ \alpha(L)=0.0040 20; \alpha(M)=9.9\times10^{-4} 49 (M)=2.9\times10^{-4} 14 (Q)=7.2\times10^{-5} 26$		
1326.1 [#] 3	36 [#] 3	1326.13	(1+)	0.0	0+	[M1]	0.0356	$\begin{aligned} \alpha(N) &= 2.8 \times 10^{-14}, \ \alpha(O) &= 7.3 \times 10^{-5} \ 30, \\ \alpha(P) &= 1.40 \times 10^{-5} \ 71; \ \alpha(Q) &= 7.5 \times 10^{-7} \ 43; \\ \alpha(IPF) &= 3.1 \times 10^{-5} \ 18 \\ \alpha(K) &= 0.0277 \ 4; \ \alpha(L) &= 0.00584 \ 9; \\ \alpha(M) &= 0.001434 \ 20 \\ \alpha(N) &= 0.000400 \ 6; \ \alpha(O) &= 0.0001056 \ 15; \\ \alpha(P) &= 2.05 \times 10^{-5} \ 3; \ \alpha(Q) &= 1.144 \times 10^{-6} \ 16 \end{aligned}$		
1326.1 [#] 3	36 [#] 3	1374.15	(1 ⁻)	48.09	2+	[E1]	0.00325	$\alpha(\text{IPF})=5.51\times10^{-5} \ 8$ $\alpha(\text{K})=0.00258 \ 4; \ \alpha(\text{L})=0.000468 \ 7;$ $\alpha(\text{M})=0.0001128 \ 16$		
1357.1 <i>3</i>	33 3	1405.22	(2 ⁻)	48.09	2+	[E1]	0.00314	$\begin{aligned} &\alpha(N)=3.13\times10^{-5} 5; \ \alpha(O)=8.24\times10^{-6} \ 12; \\ &\alpha(P)=1.580\times10^{-6} \ 23; \ \alpha(Q)=8.69\times10^{-8} \ 13; \\ &\alpha(IPF)=4.71\times10^{-5} \ 7 \\ &\alpha(K)=0.00248 \ 4; \ \alpha(L)=0.000450 \ 7; \\ &\alpha(M)=0.0001084 \ 16 \\ &\alpha(N)=3.01\times10^{-5} \ 5; \ \alpha(O)=7.92\times10^{-6} \ 11; \\ &\alpha(P)=1.520\times10^{-6} \ 22; \ \alpha(Q)=8.38\times10^{-8} \ 12; \\ &\alpha(IPF)=6.06\times10^{-5} \ 9 \end{aligned}$		

Continued on next page (footnotes at end of table)

				256 N	Ad ε dec	ay (77.7 mii	a) 2000Ah02 (continued)
						γ (²⁵⁶ Fm)) (continued)
E_{γ}	I_{γ}	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult.	α^{\dagger}	Comments
1374.1 <i>3</i>	38 4	1374.15	(1 ⁻)	0.0 0+	[E1]	0.00308	$ \begin{array}{l} \alpha(\mathrm{K}) = 0.00243 \ 4; \ \alpha(\mathrm{L}) = 0.000441 \ 7; \ \alpha(\mathrm{M}) = 0.0001062 \ 15 \\ \alpha(\mathrm{N}) = 2.95 \times 10^{-5} \ 5; \ \alpha(\mathrm{O}) = 7.75 \times 10^{-6} \ 11; \ \alpha(\mathrm{P}) = 1.488 \times 10^{-6} \ 21; \\ \alpha(\mathrm{Q}) = 8.22 \times 10^{-8} \ 12 \\ \alpha(\mathrm{IPF}) = 6.88 \times 10^{-5} \ 10 \end{array} $

[†] Theoretical values from BrIcc code (2008Ki07) using "Frozen orbital" approximation, value overlaps M1 and E2, when mixing ratio is unknown.

ratio is unknown. [‡] For absolute intensity per 100 decays, multiply by 0.065 4. [#] Multiply placed with undivided intensity. [@] Multiply placed with intensity suitably divided. [&] Placement of transition in the level scheme is uncertain.

²⁵⁶Md ε decay (77.7 min) 2000Ah02

Decay Scheme

