$^{256}\mathrm{Es}\,\beta^-$ decay (7.6 h) 1989Ha10

History									
Туре	Author	Citation	Literature Cutoff Date						
Full Evaluation	Balraj Singh	NDS 141, 327 (2017)	22-Mar-2017						

Parent: ²⁵⁶Es: E=0.0+x; J^{π}=(8⁺); T_{1/2}=7.6 h; Q(β^{-})=1700 *SY*; % β^{-} decay=100.0 ²⁵⁶Es-J^{π}, T_{1/2}: From ²⁵⁶Es Adopted Levels.

²⁵⁶Es-Q(β^{-}): 1700 100 (syst,2017Wa10).

Fermium K- and L-x rays and delayed SF activities were observed by 1976HoZB.

²⁵⁶ Fm Le	vels
----------------------	------

E(level) [†]	Jπ‡	T _{1/2}	Comments
0.0#	0+		
48.3 [#] 3	2+		
159.7 [#] 3	4+		
332.3 [#] 4	6+		
563.4 [#] 4	8+		
682.30 [@] 20	(2^{+})		
725.7 [@] 3	(3+)		
783.3 [@] 3	(4^{+})		
853.5 [@] 5	(5 ⁺)		
881.7 ^{&} 3	(2 ⁻)		
922.2 ^{&} 3	(3 ⁻)		
938.9 [@] 16	(6+)		
978.4 <mark>&</mark> 6	(4 ⁻)		
1039.1 [@] 4	(7^{+})		
1045.3 ^{&} 6	(5 ⁻)		
1099.9 ^{<i>a</i>} 3	(3 ⁺)		
1123.2 5	(6 ⁻)		
1150.3?	(8^+)		
1150.5 ^a 5	(4 ⁺)		
1213.7? ^{cc} 12	(7 ⁻)		
1251.80 5	(5 ⁺)		J^{α} : γ transitions to (3 ⁺), (4 ⁺) and probably to (5 ⁺) states; 1989Ha10 suggested that the 1328.4- and 1251.8-keV levels are members of a band, as indicated by their energy differences.
1328.4? ^b 4	(6 ⁺)		
1425.2 4	(7 ⁻)	70 ns 5	%IT=100
			$K^{\pi}=(7^{-}).$ $T_{1/2}$: determined by 1989Ha10 from $(231\gamma)\beta(t)$ measurements. If $\pi(1560 \text{ level})=+$ and 134.7γ is E1, then $\pi(1425.5 \text{ level})=-$. The corresponding log <i>ft</i> of 5.2 (for I β =86%) is quite low for a first-forbidden β decay from 8 ⁺ parent. Additional information 1.
1559.9 4	(7 ⁺ ,8 ⁺)		J ^{π} : from probable allowed character of the β transition to the 1559.9-keV level from the (8 ⁺) parent state, and γ to (7 ⁻).

 † From least-squares fit to Ey values.

[‡] From Adopted Levels.

[#] Band(A): $K^{\pi}=0^+$ g.s. band. [@] Band(B): $K^{\pi}=2^+ \gamma$ -vibrational band. [&] Band(C): $K^{\pi}=2^-$ octupole-vibrational band.

$^{256}\mathrm{Es}\,\beta^-$ decay (7.6 h) 1989Ha10 (continued)

²⁵⁶Fm Levels (continued)

^{*a*} Band(D): $K^{\pi} = (3^+)$ band. ^{*b*} Band(E): $K^{\pi} = (5^+)$ band.

β^{-} radiations

E(decay)	E(level)	$I\beta^{-\dagger}$	Log ft	Comments
(140 SY)	1559.9	≈14	≈5.1	av Eβ=37 28
(274 <i>SY</i>)	1425.2	≈86	≈5.2	av E β =75 30 Note that log <i>ft</i> is quite low for a first-forbidden transition.

[†] Absolute intensity per 100 decays.

$\gamma(^{256}\text{Fm})$

Iγ normalization: Summed transition intensity from the 1425 level=100, assuming the main β feeding to this level. The 7.6-h ²⁵⁶Es $β^-$ decay scheme is presented as constructed by 1989Ha10 from their Eγ, Iγ, γγ- and βγ-coincidence data.

E_{γ}^{\dagger}	$I_{\gamma}^{\ddagger a}$	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult.	α &	Comments
(48.3 [@])		48.3	2+	0.0	0+	[E2]	832	α (L)=597 9; α (M)=171.8 24 α (N)=48.9 7; α (O)=12.31 18; α (P)=1.93 3; α (Q)=0.00466 7
(50.8 [@])		1150.5	(4 ⁺)	1099.9	(3 ⁺)			
(67.0 [@])		1045.3	(5 ⁻)	978.4	(4 ⁻)			
(76.8 [@])		1328.4?	(6+)	1251.8	(5^+)			
(78.0 [@])		1123.2	(6 ⁻)	1045.3	(5 ⁻)			
(90.5 [@])		1213.7?	(7 ⁻)	1123.2	(6 ⁻)			
96.8 2	2.55	1425.2	(7-)	1328.4?	(6+)	(E1)	0.1697	α (L)=0.1266 <i>18</i> ; α (M)=0.0317 <i>5</i> α (N)=0.00877 <i>13</i> ; α (O)=0.00222 <i>4</i> ; α (P)=0.000365 <i>6</i> ; α (Q)=1.140×10 ⁻⁵ <i>16</i> Intensity balance at the 1328.4 level implies E1 character for 96.8 γ .
^x 103.6 5	0.80							
x105.8 2 111.6 2	5.12 2.79	159.7	4+	48.3	2+	[E2]	15.96	α (L)=11.45 <i>16</i> ; α (M)=3.30 <i>5</i> α (N)=0.937 <i>14</i> ; α (O)=0.237 <i>4</i> ; α (P)=0.0379 <i>6</i> ; α (Q)=0.0001575 <i>22</i>
^x 126.0 5	0.71	1550.0		1 4 2 5 2	((F) ()	0.0505	
134.7 2	5.12	1559.9	(7+,8+)	1425.2	(7^{-})	[EI]	0.0735	$\alpha(134.7\gamma)=6.79$ for E2 and 4.44 for M1.
141" 2	0.09	922.2	(3)	783.3	(4')	[E1]	0.0656	$\alpha(L)=0.0490 \ /; \ \alpha(M)=0.01220 \ 1/$ $\alpha(N)=0.00338 \ 5; \ \alpha(O)=0.000863 \ 12;$ $\alpha(P)=0.0001481 \ 21; \ \alpha(Q)=5.21\times10^{-6} \ 8$ γ was seen in coincidence with 623.5 γ (1989Ha10).
^x 150.2 2	1.16							
156 [#] 2	0.08	881.7	(2 ⁻)	725.7	(3+)	[E1]	0.199	α (K)=0.1481 21; α (L)=0.0381 6; α (M)=0.00948 14 α (N)=0.00263 4; α (O)=0.000673 10; α (P)=0.0001165 17; α (Q)=4.22×10 ⁻⁶ 6 γ was seen in coincidence with 677.5 γ (1989Ha10).
^x 158.9 5	0.31							,
x165.2 5 172.6 2	0.50 9.70	332.3	6+	159.7	4+	[E2]	2.40	$\alpha(K)=0.1412$ 20; $\alpha(L)=1.625$ 23; $\alpha(M)=0.465$ 7

Continued on next page (footnotes at end of table)

²⁵⁶Es $β^-$ decay (7.6 h) 1989Ha10 (continued)

γ ⁽²⁵⁶Fm) (continued)</sup>

E_{γ}^{\dagger}	$I_{\gamma}^{\ddagger a}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult.	α &	Comments
								α (N)=0.1322 <i>19</i> ; α (O)=0.0335 <i>5</i> ; α (P)=0.00545 8; α (Q)=3.47×10 ⁻⁵ <i>5</i>
178.0 ^b 2	1.10 ^b	1099.9	(3 ⁺)	922.2	(3 ⁻)	[E1]	0.1487	$\alpha(K)=0.1118 \ 16; \ \alpha(L)=0.0276 \ 4; \ \alpha(M)=0.00685$
								$\alpha(N)=0.00190 \ 3; \ \alpha(O)=0.000488 \ 7;$
	h							$\alpha(P)=8.54\times10^{-5}$ 12; $\alpha(Q)=3.21\times10^{-6}$ 5
$178.0^{\circ} 2$	1.10 ⁰ 0.28	1328.4?	(6 ⁺)	1150.5	(4+)			
185.7 5	0.25	1039.1	(7 ⁺)	853.5	(5 ⁺)	[E2]	1.79	α (K)=0.1404 20; α (L)=1.184 17; α (M)=0.338 5
								$\alpha(N)=0.0961\ 14;\ \alpha(O)=0.0244\ 4;\ \alpha(P)=0.00398$ 6; $\alpha(O)=2.76\times10^{-5}\ 4$
^x 190.1 5	0.55							
192# 2	0.12	1045.3	(5 ⁻)	853.5	(5+)	[E1]	0.1257	α (K)=0.0950 <i>14</i> ; α (L)=0.0230 <i>4</i> ; α (M)=0.00570 <i>8</i> α (N)=0.001579 <i>23</i> ; α (O)=0.000406 <i>6</i> ;
								α (P)=7.15×10 ⁻⁵ 10; α (Q)=2.75×10 ⁻⁶ 4
								γ was seen in coincidence with 693.8 γ (authors of 1989Ha10 listed it as being in coincidence
107.46.5	0.70	000.0	(2-)	705 7	(2+)	1211	0.1102	with 696γ).
197.4° 3	0.79	922.2	(3)	125.1	(31)	[EI]	0.1183	$\alpha(\mathbf{K})=0.0895\ 13;\ \alpha(\mathbf{L})=0.0215\ 3;\ \alpha(\mathbf{M})=0.00535\ 8$ $\alpha(\mathbf{N})=0.001477\ 21;\ \alpha(\mathbf{O})=0.000380\ 6;$
100.2.2	1.40	0017	(2^{-})	(82.20	(2^+)	IT:11	0 1159	$\alpha(P)=6.71\times10^{-5} \ 10; \ \alpha(Q)=2.60\times10^{-6} \ 4$
199.5 2	1.40	881.7	(2)	082.30	(2^{+})	[E1]	0.1158	$\alpha(\mathbf{K})=0.087775; \alpha(\mathbf{L})=0.02103; \alpha(\mathbf{M})=0.005218$ $\alpha(\mathbf{N})=0.00144321; \alpha(\mathbf{O})=0.0003726;$
ba	b							$\alpha(P)=6.56\times10^{-5}\ 10;\ \alpha(Q)=2.55\times10^{-6}\ 4$
211.2^{bc} 5	0.87^{b}	1150.3?	(8^+) (7^-)	938.9 1213 72	(6^+) (7^-)	[M1 + E2]	3 3 77	$\alpha(K) = 2.2.21$; $\alpha(L) = 0.80.12$; $\alpha(M) = 0.211.17$
211.2 J	0.87	1423.2	(7)	1213.7	(7)		5.5 22	$\alpha(\mathbf{N})=2.221, \alpha(\mathbf{L})=0.3012, \alpha(\mathbf{M})=0.21117$ $\alpha(\mathbf{N})=0.0595; \alpha(\mathbf{O})=0.015414; \alpha(\mathbf{P})=0.00285;$
218 1 2	5 69	1099 9	(3^{+})	881 7	(2^{-})	(F1)	0 0949	$\alpha(Q)=1.00\times10^{-4} 82$ $\alpha(K)=0.0723 11: \alpha(L)=0.01696 24:$
210.1 2	5.07	1077.7	(5)	001.7	(2)	(L1)	0.0919	$\alpha(\mathbf{M}) = 0.00420 \ 6$ $\alpha(\mathbf{M}) = 0.00420 \ 6$
								$\alpha(N)=0.001163\ 17;\ \alpha(O)=0.000300\ 5;$ $\alpha(P)=5\ 33\times10^{-5}\ 8;\ \alpha(O)=2.12\times10^{-6}\ 3$
								Intensity balance at the 881.8 level suggests E1
x229.0 5	0.65							multipolarity for the 218.1 γ .
231.1 2	12.0	563.4	8+	332.3	6+	[E2]	0.772	$\alpha(K)=0.1188 \ 17; \ \alpha(L)=0.470 \ 7; \ \alpha(M)=0.1336 \ 19$
								$\alpha(P)=0.001594\ 23;\ \alpha(Q)=1.439\times10^{-5}\ 21$
^x 232.7 5 ^x 240 3 5	0.58							
^x 242.0 5	0.79							
$x_{247.4} 5$	0.38							· · · · · · · · · · · · · · · · · · ·
~252~ 2	0.07							γ was seen in coincidence with 677.5 γ (1989Ha10).
252.7 5	0.25	978.4	(4 ⁻)	725.7	(3 ⁺)	[E1]	0.0690	$\alpha(K)=0.0529 \ 8; \ \alpha(L)=0.01202 \ 17; \ \alpha(M)=0.00297$
								α (N)=0.000823 <i>12</i> ; α (O)=0.000213 <i>3</i> ;
x255.3.5	0.55							α (P)=3.82×10 ⁻⁵ 6; α (Q)=1.581×10 ⁻⁶ 23
x258.2 5	0.65							
x264.1 5 269.5 5	0.38 0.75	1123.2	(6^{-})	853.5	(5^{+})	IE11	0.0601	$\alpha(K)=0.0463$ 7; $\alpha(L)=0.01037$ 15; $\alpha(M)=0.00256$
-07.00	0.70	1120.2	(~)	00010		[]	0.0001	4

Continued on next page (footnotes at end of table)

256 Es β^- decay (7.6 h) 1989Ha10 (continued)

γ ⁽²⁵⁶Fm) (continued)</sup>

${\rm E_{\gamma}}^{\dagger}$	$I_{\gamma}^{\ddagger a}$	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult.	α &	Comments
275.3 ^c 2	1.15	1425.2	(7-)	1150.3?	(8+)	[E1]	0.0575	$\begin{array}{l} \alpha(\mathrm{N}) = 0.000709 \ 10; \ \alpha(\mathrm{O}) = 0.000184 \ 3; \\ \alpha(\mathrm{P}) = 3.31 \times 10^{-5} \ 5; \ \alpha(\mathrm{Q}) = 1.392 \times 10^{-6} \ 20 \\ \alpha(\mathrm{K}) = 0.0443 \ 7; \ \alpha(\mathrm{L}) = 0.00988 \ 14; \\ \alpha(\mathrm{M}) = 0.00244 \ 4 \\ \alpha(\mathrm{N}) = 0.000676 \ 10; \ \alpha(\mathrm{O}) = 0.0001749 \ 25; \end{array}$
^x 277.3 5	0.60							$\alpha(P)=3.16\times10^{-5} 5; \ \alpha(Q)=1.335\times10^{-6} 19$
x297.5 5 302.0 5	0.52 0.82	1425.2	(7-)	1123.2	(6 ⁻)	[M1+E2]	1.16 86	α (K)=0.82 74; α (L)=0.249 89; α (M)=0.064 19 α (N)=0.0180 53; α (O)=0.0047 15; α (D)=8 7×10 ⁻⁴ 22; α (O)=2 7×10 ⁻⁵ 20
316.4 2	1.02	1099.9	(3+)	783.3	(4+)	[M1+E2]	1.02 76	$\alpha(\mathbf{F}) = 8.7 \times 10^{-5} 32; \ \alpha(\mathbf{Q}) = 3.7 \times 10^{-5} 30$ $\alpha(\mathbf{K}) = 0.73 \ 65; \ \alpha(\mathbf{L}) = 0.215 \ 81; \ \alpha(\mathbf{M}) = 0.055 \ 18$ $\alpha(\mathbf{N}) = 0.0155 \ 49; \ \alpha(\mathbf{O}) = 0.0041 \ 14;$ $\alpha(\mathbf{P}) = 7.5 \times 10^{-4} \ 30; \ \alpha(\mathbf{Q}) = 3.2 \times 10^{-5} \ 26$
x326.7 2 x333.2 5 x343.0 5	1.37 0.36							
374.2 2	1.43	1099.9	(3+)	725.7	(3+)	[M1+E2]	0.64 48	α (K)=0.46 41; α (L)=0.129 57; α (M)=0.033 13 α (N)=0.0092 36; α (O)=0.00241 97; α (P)=4 5×10 ⁻⁴ 21; α (O)=2 0×10 ⁻⁵ 17
380.0 5	0.38	1425.2	(7 ⁻)	1045.3	(5 ⁻)	[E2]	0.1534	$\alpha(\mathbf{K}) = 0.0594 \ 9; \ \alpha(\mathbf{L}) = 0.0681 \ 10; \ \alpha(\mathbf{M}) = 0.0189 \ 3$ $\alpha(\mathbf{K}) = 0.00534 \ 8; \ \alpha(\mathbf{O}) = 0.001368 \ 20; $ $\alpha(\mathbf{P}) = 0.000234 \ 4; \ \alpha(\mathbf{O}) = 3.97 \times 10^{-6} \ 6$
$397.2^{\circ}5$	0.74	1251.8	(5 ⁺)	853.5	(5 ⁺)	[M1+E2]	0.6 5	
417.6 2	1.53	1099.9	(3+)	682.30	(2+)	[M1+E2]	0.47 36	α (K)=0.34 30; α (L)=0.093 45; α (M)=0.024 11 α (N)=0.0066 29; α (O)=0.00173 76; α (P)=3.3×10 ⁻⁴ 16; α (O)=1.5×10 ⁻⁵ 12
450.8 [#] 15	0.15	783.3	(4+)	332.3	6+			γ was seen in coincidence with 172.6 γ
468.4 5	0.90	1251.8	(5+)	783.3	(4+)	[M1+E2]	0.34 26	$\alpha(K)=0.25\ 22;\ \alpha(L)=0.066\ 34;\ \alpha(M)=0.0168\ 79$ $\alpha(N)=0.0047\ 22;\ \alpha(O)=0.00123\ 59;$ $\alpha(P)=2.3\times10^{-4}\ 12;\ \alpha(O)=1.10\times10^{-5}\ 86$
526.1 5 566.0 5	0.82	1251.8	(5^+) (3^+)	725.7 159.7	(3 ⁺) 4 ⁺			
586.6 ^{#c} 15	0.2	1150.3?	(8 ⁺)	563.4	8+			γ was seen in coincidence with 231.1 γ (1989Ha10).
$x_{602.85}$	0.77	038.0	(6^{+})	222.2	6+			e was seen in ecineidance with 172 fer
000.0 15	0.4	930.9	(0)	552.5	0			(1989Ha10).
623.5 2	1.12	783.3	(4^+)	159.7	4 ⁺			
634.0 2 677 5 2	1.73	682.30 725 7	(2^+)	48.3	2+ 2+			
682.3.2	1.84	682.30	(2^+)	48.5	0^{+}			
693.8 [#] 15	0.8	853.5	(5^+)	159.7	4 ⁺			γ was seen in coincidence with 111.6 γ
706.8 2	1.15	1039.1	(7^{+})	332.3	6+			(1)0)11110).
762.7 2 ^x 768.1 2	2.28 2.25	922.2	(3-)	159.7	4+			
833.5 2 ^x 846.7 2	5.45 2.02	881.7	(2 ⁻)	48.3	2+			
861.8 2	19.66	1425.2	(7-)	563.4	8+			
940.1 [#] 15	0.8	1099.9	(3 ⁺)	159.7	4+			γ was seen in coincidence with 96.8 γ (1989Ha10).

Continued on next page (footnotes at end of table)

256 Es β^- decay (7.6 h) 1989Ha10 (continued)

γ (²⁵⁶Fm) (continued)

E_{γ}^{\dagger}	$I_{\gamma}^{\ddagger a}$	E_i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}
1051.5 2	2.56	1099.9	(3^{+})	48.3	2+
1092.9 2	9.24	1425.2	(7^{-})	332.3	6+

[†] Measurements of 1989Ha10. For transitions with Iγ≥1.0, uncertainty is 0.15 keV (1989Ha10). For gammas that were observed in coincidence spectra and not resolved in singles, uncertainty was typically 1.5 keV (1989Ha10). Evaluator assigns 0.2 keV for Iγ≥1, 0.5 keV for Iγ<1, and 1.5 or 2 keV when γ is seen only in coincidence data.

[‡] Relative photon intensity, measured by 1989Ha10, uncertainties are not given by the authors.

[#] γ was not resolved in singles spectrum (1989Ha10).

[@] The transition was not observed. $E\gamma$ is from decay scheme.

& Theoretical values from BrIcc code (2008Ki07) using "Frozen orbital" approximation, value overlaps M1 and E2, when mixing ratio is unknown.

^{*a*} For absolute intensity per 100 decays, multiply by ≈ 2.56 .

- ^b Multiply placed with undivided intensity.
- ^c Placement of transition in the level scheme is uncertain.

 $x \gamma$ ray not placed in level scheme.

²⁵⁶Es β^- decay (7.6 h) 1989Ha10

Decay Scheme

²⁵⁶Es β^- decay (7.6 h) 1989Ha10

Decay Scheme (continued)

²⁵⁶Es β^- decay (7.6 h) 1989Ha10

 $^{256}_{100}\mathrm{Fm}_{156}$