$^{256}\text{Es}\,\beta^-$ decay (25.4 min) 1981Lo15

History			
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Balraj Singh	NDS 141, 327 (2017)	22-Mar-2017

Parent: ²⁵⁶Es: E=0.0; J^{π} =(1⁺,0⁻); $T_{1/2}$ =25.4 min 24; $Q(\beta^{-})$ =1700 SY; % β^{-} decay=100.0

 256 Es-J^{π},T_{1/2}: From 256 Es Adopted Levels.

²⁵⁶Es-Q(β^-): 1700 100 (syst,2017Wa10).

Growth and decay of ²⁵⁶Fm spontaneous fission were observed by 1981Lo15. β^- and γ rays from the 25.4-min ²⁵⁶Es decay were not measured.

If $J^{\pi}(^{256}\text{Es g.s.})=1^+$, the β^- decay is expected to feed the 2⁺ first excited state at 48.3 keV. From the Alaga rule, I β (to 2⁺)/I β (to 0⁺)=0.5 is calculated. If probable β branches to other excited levels are neglected, the Alaga rule suggests I β (to g.s.)=67% which

may be taken as the upper limit by considering other possible β branches: I β (to g.s.) $\leq 67\%$, log $ft \geq 6.7$.

The ground state and first excited state at 48 keV are expected to be populated.