History						
Туре	Author	Citation	Literature Cutoff Date			
Full Evaluation	Balraj Singh	NDS 141, 327 (2017)	22-Mar-2017			

 $Q(\beta^{-})=-1970 SY; S(n)=6384 7; S(p)=5891 12; Q(\alpha)=7027 5 2017Wa10$

Estimated uncertainty=120 for $Q(\beta^-)$ (2017Wa10). S(2n)=11559 7, S(2p)=10433 12 (2017Wa10).

1955Ch30 produced and identified ²⁵⁶Fm in neutron irradiation of ²⁵⁵Es, and β⁻ decay of ²⁵⁶Es at Berkeley. Measured half-life from decay curve for spontaneous fission. Later studies: of ²⁵⁶Fm decay: 1958Ph40, 1965Si14, 1968Ho13, 1972Fl04, 1981Lo15. Theoretical calculations: consult the Nuclear Science References (NSR) database for about 200 theory references.

2014Sh07, 2013Af01, 2013Pr08, 2012Jo05: nuclear structure theory references.

²⁵⁶Fm Levels

Assignments to band members are from depopulation patterns, and energy fit to rotational bands.

Cross Reference (XREF) Flags

A $^{256}\text{Es}\beta^-$	decay	(25.4	min)
----------------------------	-------	-------	------

- **B** 256 Es β^- decay (7.6 h)
- C 256 Md ε decay (77.7 min)

E(level) [†]	\mathbf{J}^{π}	T _{1/2}	XREF	Comments
0.0#	0+	157.1 min <i>13</i>	BC	%α=8.1 3; %SF=91.9 3 T _{1/2} : weighted average of 150 min 4 (1981Lo15), 157.6 min 13 (1972Fl04), 157 min 2 (1968Ho13), 162 min 6 (1965Si14), 160 min 10 (1958Ph40). Other: ≈3-4 h (1955Ch30). Branching: α/(α+SF)=0.081 3 was determined by 1968Ho13 from α and SF counts. Other measurement: SF/α=35 10 (1965Si14). Emission of α rays, tritons and protons in the SF of ²⁵⁶ Fm was studied by 1985Wi10.
48.12 [#] 16	2+ ‡		BC	
159.60 [#] 20	4+‡		BC	
332.2 [#] 3	6+ [‡]		В	
563.3 [#] 3	8+‡		В	
682.21 [@] 14	(2+)		BC	J^{π} : relative photon intensities of transitions to 0 ⁺ and 2 ⁺ states of g.s. band suggest $J^{\pi}=2^+$.
725.43 [@] 19	(3+)		BC	
783.20 [@] 22	(4^{+})		В	
853.4 [@] 5	(5 ⁺)		В	
881.59 ^{&} 19	(2 ⁻)		В	J^{π} : γ transitions to the (2 ⁺),(3 ⁺) states of K=2 γ -vibrational band, and γ to only 2 ⁺ of the K=0 g.s. band; no γ rays to 0 ⁺ ,4 ⁺ of the K=0 g.s. band.
922.03 ^{&} 23	(3-)		В	
938.8 [@] 16	(6 ⁺)		В	
978.1 ^{&} 5	(4 ⁻)		В	
1039.0 [@] 4	(7^{+})		В	
1045.1 ^{&} 5	(5 ⁻)		В	
1099.73 ^a 18	(3+)		В	J^{π} : γ transitions to 2 ⁺ , (2 ⁻) and 4 ⁺ state rule out J<2, 2 ⁻ , J>3 for 1099.7 level; 218.1 γ to (2 ⁻) might be E1, as deduced from intensity balance at the 882.8 level in 7.6-h ²⁵⁶ Es β^- decay. The probable J^{π} values, then, are 2 ⁺ and 3 ⁺ . From the

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

²⁵⁶Fm Levels (continued)

E(level) [†]	J^{π}	T _{1/2}	XREF	Comments
				branching ratios of deexciting gammas, 1989Ha10 suggested $J^{\pi}=3^+$ which is consistent with absence of γ to the 0^+ g.s.
1123.0 ^{&} 5	(6 ⁻)		В	
1150.3? [@]	(8^{+})		В	
1150.4 ^a 4	(4+)		В	
1213.5? ^{&} 11	(7 ⁻)		В	
1251.6 ^b 4	(5 ⁺)		В	J^{π} : γ transitions to (3 ⁺) and (4 ⁺) states of K=2 band, but no γ to 2 ⁺ bandhead imply J^{π} of 5 ⁺ for the 1251.6 level.
1326.17 18	(1^{+})		С	Proposed configuration= $v7/2[613] \otimes v9/2[615]$ (2000Ah02).
1328.3? ^b 4	(6^{+})		В	J^{π} : from probable (E1) character of the 96.8 γ from (7 ⁻) isomeric state.
1360.4 <i>3</i>	(2^{+})		С	Proposed configuration= $v7/2[613] \otimes v9/2[615]$ (2000Ah02).
1374.19 <i>18</i>	(1^{-})		С	Proposed configuration= $\pi 7/2[633] \otimes \pi 7/2[514]$ (2000Ah02).
1405.27 21	(2^{-})		С	Proposed configuration= $\pi 7/2[633] \otimes \pi 7/2[514]$ (2000Ah02).
1425.1 <i>3</i>	(7^{-})	70 ns 5	В	%IT=100
				T _{1/2} : from 1989Ha10 by $(\beta)(231\gamma)(t)$ data. The observed β -delayed fission activities were consistent with this half-life.
				The partial half-life for fission was deduced by 1989Ha10 as 0.8 ms +88-7 from the
				β -delayed-fission probability of 2×10^{-5} (measured number of delayed fissions/total number of β^- decays of 7.6-h 256 Es: two fission events were observed.)
				J^{π} : γ transitions to 8^+ and (5^-) states, relative photon intensities of deex/ii γ rays, and nonobservation of transitions to 5^+ , 4^+ states suggest $J^{\pi}=(7^-)$. 1989Ha10 pointed out that this level could be analogous to the 7 ⁻ , two-quasiparticle state
				predicted for ²³⁴ Fm by 1964So02: $K^{\pi}=7^{-}$, $\pi7/2[633]\otimes\pi7/2[514]$.
1559.8 4	(7 ⁺ ,8 ⁺)		В	J^{π} : log <i>ft</i> for the β branch from 7.6-h ²³⁰ Es indicates an allowed transition, if completion of the decay scheme would not decrease β intensity considerably. If J^{π} (7.6-h ²⁵⁶ Es parent)=8 ⁺ , then π (1560 level)=+. From γ transition to the (7 ⁻) state, J^{π} =7 ⁺ or 8 ⁺ may be deduced. Because of the assumptions made, however, these suggested spins should be considered as very tentative.

 † From least-squares fit to Ey values.

 ‡ Strong evidence for the presence of rotational band based on g.s.

[#] Band(A): $K^{\pi}=0^+$ band.

[@] Band(B): $K^{\pi} = (2^+) \gamma$ -vibrational band.

& Band(C): $K^{\pi} = (2^{-})$ octupole-vibrational band.

^{*a*} Band(D): $K^{\pi} = (3^+)$ band.

^b Band(E): $K^{\pi} = (5^+)$ band.

E _i (level)	\mathbf{J}_i^{π}	${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\dagger}	$E_f J_f^{\pi}$	Mult.	α #	$I_{(\gamma+ce)}$
48.12	2+	(48.3 [‡] 3)		0.0 0+	[E2]	832	100
159.60	4+	111.6 2	100	48.12 2+	[E2]	15.96	
332.2	6+	172.6 2	100	159.60 4+	[E2]	2.40	
563.3	8^{+}	231.1 2	100	332.2 6+	[E2]	0.772	
682.21	(2^{+})	634.1 ^a 2	94 <mark>a</mark> 10	48.12 2+			
		682.2 2	100	$0.0 0^+$			
725.43	(3^{+})	565.9 <i>3</i>	23 4	159.60 4+			
		677.4 2	100 8	48.12 2+			
783.20	(4^{+})	450.8 15	13	332.2 6+			

Continued on next page (footnotes at end of table)

 $\gamma(^{256}\text{Fm})$

Adopted Levels, Gammas (continued)

γ ⁽²⁵⁶Fm) (continued)</sup>

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$E_f J_f^{\pi}$
783.20	(4^{+})	623.5 2	100	159.60 4+
853.4	(5+)	693.8 15	100	159.60 4+
881.59	(2^{-})	156 2	1.5	725.43 (3 ⁺)
		199.3 2	26	682.21 (2+)
		833.5 2	100	48.12 2+
922.03	(3 ⁻)	141 2	4	783.20 (4 ⁺)
		197.4 <mark>6</mark> 5	35	725.43 (3+)
		762.7 2	100	159.60 4+
938.8	(6^{+})	606.6 15	100	332.2 6+
9/8.1	(4^{-})	252.7 5	100	$725.43 (3^+)$
1039.0	(/')	185.7.5	100	$853.4 (5^{+})$ $332.2 6^{+}$
1045 1	(5^{-})	(67.0^{\ddagger})		$9781(4^{-})$
1045.1	(5)	192 2		853.4 (5 ⁺)
1099.73	(3^{+})	$178.0^{\textcircled{0}}{2}$	<19	$922.03(3^{-})$
		218.1 2	100	881.59 (2 ⁻)
		316.4 2	18	783.20 (4+)
		374.2 2	25	725.43 (3 ⁺)
		417.6 2	27	682.21 (2 ⁺)
		940.1 15	14	159.60 4+
		1051.5 2	45	48.12 2+
1123.0	(6 ⁻)	(78.0^{\ddagger})		$1045.1 (5^{-})$
		269.5 5		853.4 (5 ⁺)
1150.3?	(8^{+})	211.2 5		938.8 (6 ⁺)
		586.6 ⁰ 15		563.3 8+
1150.4	(4 ⁺)	(50.8 [‡])		1099.73 (3+)
1213.5?	(7-)	(90.5 [‡])		1123.0 (6 ⁻)
1251.6	(5^{+})	397.2 ^b 5	82	853.4 (5 ⁺)
		468.4 5	100	783.20 (4+)
		526.1 5	91	725.43 (3 ⁺)
1326.17	(1^{+})	600.8 4	17 3	725.43 (3+)
		644.0 2	100 8	$682.21 (2^+)$
		12/8.0 3	14 2	48.12 2
		1326.1 × 3	330 3	0.0 0+
1328.3?	(6^{+})	(76.8+)		1251.6 (5+)
		178.0 [©] 2	<i>a</i>	1150.4 (4+)
1360.4	(2^{+})	634.1^{ab} 2	76 ^{<i>a</i>} 30	725.43 (3+)
		677.3 ^{ab} 2	<i>u</i>	$682.21 (2^+)$
		1200.6 5	42.9	159.60 4+
1274 10	(1-)	1312.3 3	100 9	$48.12 2^{+}$
13/4.19	(1)	092.0 2	100 8	082.21 (2)
		1326.1 3	49 ^{cc} 4	48.12 2
1405 27	(2^{-})	13/4.1 3	52 0 70 6	$0.0 0^{+}$
1403.27	(2)	723 0 2	82 0	682.21 (2 ⁺)
		1357.1.3	100 9	48.12 2+
1425.1	(7^{-})	96.8 2	13	1328.3? (6 ⁺)
	、 /	211.2 ^{@b} 5	<4.4	$1213.5?(7^{-})$
		275 3 ^b 2	5.8	1150.3? (8 ⁺)
		302.0.5	4.2	1123.0 (6 ⁻)
		380.0 5	1.9	1045.1 (5 ⁻)

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

 $\gamma(^{256}\text{Fm})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_{f}^{π}	Mult.	α #
1425.1	(7 ⁻)	861.8 2	100	563.3	8+		
		1092.9 2	47	332.2	6+		
1559.8	$(7^+, 8^+)$	134.7 2	100	1425.1	(7^{-})	[E1]	0.0735

[†] From 7.6-h ²⁵⁶Es β^- decay or ²⁵⁶Md ε decay, when independent levels are populated in each. For 682 and 725 levels, populated in both the decays, unweighted averages are taken.

[±] Transition has not been observed; its energy is from level scheme.

[#] Theoretical values from BrIcc code (2008Ki07) using "Frozen orbital" approximation.

[@] Multiply placed.

[&] Multiply placed with undivided intensity.

^{*a*} Multiply placed with intensity suitably divided.

^b Placement of transition in the level scheme is uncertain.

 $^{256}_{100}\mathrm{Fm}_{156}$

 $^{256}_{100}$ Fm $_{156}$

 $^{256}_{100}\mathrm{Fm}_{156}$

7

 $^{256}_{100}\mathrm{Fm}_{156}$