²⁵⁵No ε decay 1976SiZS

History							
Туре	Author	Citation	Literature Cutoff Date				
Full Evaluation	E. Browne, J. K. Tuli	NDS 114, 1041 (2013)	1-Nov-2011				

Parent: ²⁵⁵No: E=0; $J^{\pi}=(1/2^+)$; $T_{1/2}=3.1 \text{ min } 2$; $Q(\varepsilon)=1963 \ 16$; $\mathscr{H}\varepsilon+\mathscr{H}\beta^+$ decay=38.6 25 ²⁵⁵No- $\mathscr{H}\varepsilon+\mathscr{H}\beta^+$ decay: from 1976SiZS.

Production: ²⁴⁹Cf(¹²C, α 2n) E=86 MeV, ion chem. Measured α decays of: ²⁵⁵No, ²⁵⁵Md (ε daughter of ²⁵⁵No) and ²⁵⁵Fm (ε daughter of ²⁵⁵Md). Deduced $\%\varepsilon + \%\beta^+=38.6$ 25.

The decay scheme has not been studied.

²⁵⁵Md Levels

E(level) [†]	$J^{\pi \dagger}$	
0	$(7/2^{-})$	
12 SY	$(1/2^{-})$	

[†] From Adopted Levels.

ε, β^+ radiations

 ε branchings are likely to feed the 1/2[521] and 3/2[521] bands in ²⁵⁵Md; in ²⁴⁹Cm β -decay the analogous log *ft*'s to the bandheads are 5.8 and 5.9, respectively.

E(decay)	E(level)	Log ft	$\mathrm{I}(\varepsilon + \beta^+)^\dagger$	Comments	
(1951 16)	12	>5.0	<100	$I(\varepsilon + \beta^+)$: $\approx 20\% \ \varepsilon + \beta^+$ branch would give log $ft \approx 5.7$ indicating that at least 80% of the decay will populate higher-energy levels.	

[†] Absolute intensity per 100 decays.