Adopted Levels, Gammas

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	E. Browne, J. K. Tuli	NDS 114, 1041 (2013)	1-Nov-2011
$Q(\beta^{-}) = -4383 SY; S(n) = 7997 SY; S(p) = 206$ Estimated $\Delta Q(\beta^{-}) = 116, \Delta S(n) = 302$ (2012) Additional information 1.	56 20; $Q(\alpha)$ =8556 7 2 Va38).	012Wa38	
Calculations, compilation: α decay: 1993Bu09. g.s. properties: 1997Mo25, 1995Mo29. Single-particle Nilsson levels: 2010Ad19, 2 1994Cw02 have calculated the following si 0.73 MeV, 5/2[512]; 0.87 MeV, 7/2[633 Q(α) and T _{1/2} : 2011Sa40, 2010Si27, 2009I	2004Pa40, 2004HeZZ, 20 ngle-particle level sequer 5]. Do22, 2008Do12, 2002Lo	03Be41, 1994Cw02. nce: g.s., 7/2[514]; 0.14 M p05.	eV, 9/2[624]; 0.15 MeV, 1/2[521];
Assignment: ²⁴⁹ Cf(¹⁰ B,4n), ²⁴⁹ Cf(¹¹ B,5n),	²⁴³ Am(¹⁶ O,4n) excit (19	071Es01).	
	25	⁵ Lr Levels	
	Cross Refe	rence (XREF) Flags	

\mathbf{A} ²⁰⁹ Bi(48 Ca,2n γ)
---------------------------------	--------------------------

- В
- С

²⁵⁵Lr IT decay (2.54 s) ²⁵⁹Db α decay ²⁵⁵Lr IT decay (1.70 ms) D

E(level) ^d	$J^{\pi \dagger}$	T _{1/2}	XREF	Comments
0.0	[1/2 ⁻]	31.1 s <i>11</i>	ABCD	 %α=99.7 1; %ε=0.3 1; %SF<0.1 %α Deduced by evaluators from data in 2008Ha31. Other values: %α=85 15\$ %ε+%β⁺<30\$ %SF<0.1, from 1971Es01. Upper limit deduced from comparison of possible ²⁵⁵No (ε daughter) α's to ²⁵⁵Lr α's. %SF from T_{1/2}(SF)>6 h (1976Og02,2000Ho27) and T_{1/2}=31.1 s. J^π: Expected from theory (2002Lo05). Other: 2008KeZY. T_{1/2}: Weighted average of 31 s 2 (2008Ha31) and 31.1 s 13 (2006Ch52). Other values: 22 s 5 (1971Es01), 21.5 s 50 (1976BeYM), and>19.1 s (2008An16), 21 s 8 (2001Ga20).
38 ^{#b} 10	[7/2 ⁻]	2.54 s 5	AB D	$\% \alpha \approx 40$ (2006Ch52); %IT ≈ 60 J ^{π} : Expected from theory (2002Lo05). Other: 2008KeZY. T _{1/2} : Weighted average of 2.6 s <i>l</i> (2008Ha31), 2.53 s <i>l</i> 3 (2006Ch52), and 2.53 s 5 (2008An16).
38+x ^{#b}	$(9/2^{-})$		A	
y@	$(9/2^+)$		Α	
69.5+y [@] <i>c</i> 4	$(11/2^+)$		Α	
151.8+y ^{@c} 5	$(13/2^+)$		Α	
196.6 ^{‡<i>c</i>} 5	5/2-		Α	
227.0+x ^{#b} 10	$(11/2^{-})$		Α	
253.0+x ^{#b} 10	$(13/2^{-})$		Α	
246.5+y ^{@c} 5	$(15/2^+)$		Α	
353.4+y ^{@c} 6	$(17/2^+)$		Α	
443.8 ^{‡b} 7	9/2-		Α	
466.0 ^{#b} 15	(15/2 ⁻)		A	

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

²⁵⁵Lr Levels (continued)

E(level) ^d	J^{π}	T _{1/2}	XREF	Comments
517.6+x ^{#b} 12	$(17/2^{-})$		A	
740.0 ^{‡b} 9	$(13/2^{-})$		Α	
754.4+x ^{#b} 15	$(19/2^{-})$		Α	
740.0+y ^{ac} 5	$(15/2^+)$	<1 µs	Α	$T_{1/2}$: From 2009Je02.
831.6+x ^{#b}	$(21/2^{-})$		Α	
850.4+y ^{<i>dc</i>} 6	$(17/2^+)$		Α	
878.8+y ^{&c} 10	$(19/2^{-})$	≥10 ns	Α	$T_{1/2}$: From 2009Je02.
972.9+y ^{ac}	$(19/2^+)$		Α	
1016.3+y ^{&c} 10	$(21/2^{-})$		Α	
1082.9 ^{‡b} 10	$(17/2^{-})$		Α	
1092.4+x ^{#b} 18	$(23/2^{-})$		Α	
1108.0+y ^{ac} 10	$(21/2^+)$		Α	
1191.6+x ^{#b} 16	$(25/2^{-})$		Α	
1164.7+y ^{&c} 10	$(23/2^{-})$		Α	
1408.6+y ^C 10	$(25/2^+)$	1.70 ms <i>3</i>	A D	$\% \alpha < 0.15$ (2008An16); %IT>99.85
				coincidence with 588-keV γ ray (2008Ha31); 1.81 ms 2 (2008An16).
1469.9 ^{‡b} 15	$(21/2^{-})$		Α	
1476.4 ^{#b} 21	$(27/2^{-})$		Α	
1899.9 ^{‡b} 18	$(25/2^{-})$		Α	

 † Based on rotational band structure and $\gamma\text{-ray}$ decay patterns, unless otherwise specified.

[‡] Band(A): 1/2[521] band.

[#] Band(B): 7/2[514] band.

[@] Band(C): 9/2[624] band.

[&] Band(D): K=(19/2⁻) band.

^a Band(E): $K=(15/2^{+})$ band. ^b From 2009Ke02 in ²⁰⁹Bi(⁴⁸Ca,2n\gamma). ^c From 2009Je02 in ²⁰⁹Bi(⁴⁸Ca,2n\gamma).

 d Deduced by evaluators from least-squares fit to γ -ray energies.

 $\gamma(^{255}Lr)$

E _i (level)	\mathbf{J}_i^{π}	Eγ	Iγ	\mathbf{E}_{f}	J_f^π	Mult.	α #	Comments
69.5+y	(11/2 ⁺)	69.5 [‡] 4	100‡	у	(9/2+)	[M1]	41.7 10	α (L)=31.1 7; α (M)=7.75 17; α (N+)=2.91 7 α (N)=2.19 5; α (O)=0.593 13; α (P)=0.118 3; α (Q)=0.00765 17
151.8+y	(13/2 ⁺)	82.3 [‡] <i>3</i>	100 [‡]	69.5+y	(11/2 ⁺)	[M1]	25.5 5	α (L)=19.0 4; α (M)=4.73 9; α (N+)=1.77 4 α (N)=1.336 24; α (O)=0.362 7; α (P)=0.0723 13; α (Q)=0.00466 9
196.6	5/2-	196.6 [†] 5	100	0.0	[1/2-]			
227.0+x	$(11/2^{-})$	189 [†] 1	100	38	[7/2 ⁻]			
253.0+x	$(13/2^{-})$	215 [†] 1	100	38+x	(9/2 ⁻)			
246.5+y	(15/2 ⁺)	94.7 [‡] 3	100 [‡]	151.8+y	(13/2 ⁺)	[M1]	16.9 <i>3</i>	α (L)=12.62 22; α (M)=3.14 6; α (N+)=1.180 20 α (N)=0.888 15; α (O)=0.241 4; α (P)=0.0481 8; α (Q)=0.00310 6
		177.0 [‡] 4	33 [‡] 11	69.5+y	(11/2 ⁺)	[E2]	2.79 5	$\alpha(K)=0.1218 \ 18; \ \alpha(L)=1.91 \ 4; \ \alpha(M)=0.552 \ 10; \ \alpha(N+)=0.208 \ 4$

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

γ ⁽²⁵⁵Lr) (continued)</sup>

E _i (level)	\mathbf{J}_i^π	Eγ	I_{γ}	E_f	\mathbf{J}_f^{π}	Mult.	α #	Comments
								α (N)=0.159 3; α (O)=0.0416 8; α (P)=0.00701 12; α (Q)=5.54×10 ⁻⁵ 9
353.4+y	$(17/2^+)$	107	100	246.5+y	$(15/2^+)$			E_{γ} : From Fig. 2 in 2009Je02.
443.8	9/2-	247.2 5	100	196.6	5/2-			
466.0	$(15/2^{-})$	239 1	100	227.0+x	$(11/2^{-})$			
517.6+x	$(17/2^{-})$	264.6 5	100	253.0+x	$(13/2^{-})$			
740.0	$(13/2^{-})$	296.2 5	100	443.8	9/2-			
754.4+x	$(19/2^{-})$	288.4 [†] 4	100					
740.0+y	(15/2+)	386.6 [‡] 4	23‡ 8	353.4+y	(17/2 ⁺)	[M1]	1.341	$\begin{aligned} &\alpha(\mathbf{K}) = 1.030 \ 15; \ \alpha(\mathbf{L}) = 0.232 \ 4; \\ &\alpha(\mathbf{M}) = 0.0576 \ 9; \ \alpha(\mathbf{N}+) = 0.0216 \ 3 \\ &\alpha(\mathbf{N}) = 0.01625 \ 24; \ \alpha(\mathbf{O}) = 0.00440 \ 7; \\ &\alpha(\mathbf{P}) = 0.000877 \ 13; \ \alpha(\mathbf{Q}) = 5.58 \times 10^{-5} \ 8 \end{aligned}$
		493.5 [‡] <i>3</i>	100 [‡] 14	246.5+y	(15/2+)	[M1]	0.685	$\begin{aligned} &\alpha(\mathbf{K}) = 0.526 \ 8; \ \alpha(\mathbf{L}) = 0.1181 \ 17; \\ &\alpha(\mathbf{M}) = 0.0293 \ 5; \ \alpha(\mathbf{N}+) = 0.01098 \ 16 \\ &\alpha(\mathbf{N}) = 0.00827 \ 12; \ \alpha(\mathbf{O}) = 0.00224 \ 4; \\ &\alpha(\mathbf{P}) = 0.000446 \ 7; \ \alpha(\mathbf{Q}) = 2.83 \times 10^{-5} \ 4 \end{aligned}$
		588.1 [‡] 3	91 [‡] 15	151.8+y	(13/2 ⁺)	[M1]	0.424	$\begin{aligned} &\alpha(\mathbf{K}) = 0.326 \ 5; \ \alpha(\mathbf{L}) = 0.0729 \ 11; \\ &\alpha(\mathbf{M}) = 0.0181 \ 3; \ \alpha(\mathbf{N}+) = 0.00677 \ 10 \\ &\alpha(\mathbf{N}) = 0.00510 \ 8; \ \alpha(\mathbf{O}) = 0.001380 \ 20; \\ &\alpha(\mathbf{P}) = 0.000275 \ 4; \ \alpha(\mathbf{Q}) = 1.746 \times 10^{-5} \ 25 \end{aligned}$
831.6+x	$(21/2^{-})$	314.0 [†] 5	100	517.6+x	$(17/2^{-})$			
850.4+y	(17/2 ⁺)	110.4 [‡] 3	100 [‡]	740.0+y	(15/2+)	[M1]	10.86 <i>18</i>	α (L)=8.09 <i>13</i> ; α (M)=2.02 <i>4</i> ; α (N+)=0.756 <i>13</i> α (N)=0.569 <i>10</i> ; α (O)=0.1542 <i>25</i> ; α (P)=0.0308 <i>5</i> ; α (Q)=0.00198 <i>4</i>
878.8+y	(19/2-)	(28)	100	850.4+y	(17/2+)	[E1]	2.68	$\begin{array}{l} \alpha(L)=1.516\ 22;\ \alpha(M)=0.856\ 12;\\ \alpha(N+)=0.306\ 5\\ \alpha(N)=0.239\ 4;\ \alpha(O)=0.0585\ 9;\\ \alpha(P)=0.00763\ 11;\ \alpha(Q)=0.0001590\ 23 \end{array}$
972.9+y	(19/2+)	123 [‡] 1	100 [‡]	850.4+y	(17/2 ⁺)	[M1]	7.95 22	$\begin{array}{l} \alpha(L)=5.92 \ 17; \ \alpha(M)=1.48 \ 4; \\ \alpha(N+)=0.554 \ 16 \\ \alpha(N)=0.417 \ 12; \ \alpha(O)=0.113 \ 4; \\ \alpha(P)=0.0225 \ 7; \ \alpha(Q)=0.00145 \ 4 \end{array}$
1016.3+y	(21/2 ⁻)	137.4 [‡] 4	100 [‡]	878.8+y	(19/2 ⁻)	[M1]	5.78 10	$\begin{array}{l} \alpha(L)=4.31 \ 7; \ \alpha(M)=1.073 \ 18; \\ \alpha(N+)=0.402 \ 7 \\ \alpha(N)=0.303 \ 5; \ \alpha(O)=0.0821 \ 14; \\ \alpha(P)=0.0164 \ 3; \ \alpha(Q)=0.001051 \ 18 \end{array}$
1082.9	$(17/2^{-})$	342.9 [†] 5	100	740.0	$(13/2^{-})$			
1092.4+x	$(23/2^{-})$	338 [†] 1	100	754.4+x	$(19/2^{-})$			
1108.0+y	(21/2+)	135.2 [‡] 3	100‡	972.9+y	(19/2+)	[M1]	6.06	$\alpha(L)=4.51 7; \alpha(M)=1.123 18; \alpha(N+)=0.422 7 \alpha(N)=0.317 5; \alpha(O)=0.0860 14; \alpha(P)=0.0172 3; \alpha(Q)=0.001101 17 $
1191.6+x	$(25/2^{-})$	360 [†] 1	100	831.6+x	$(21/2^{-})$			
1164.7+y	(23/2 ⁻)	148.3 [‡] 4	100 [‡]	1016.3+y	(21/2 ⁻)	[M1]	4.64 8	$\begin{array}{l} \alpha(L)=3.46 \ 6; \ \alpha(M)=0.861 \ 14; \\ \alpha(N+)=0.323 \ 6 \\ \alpha(N)=0.243 \ 4; \ \alpha(O)=0.0659 \ 11; \\ \alpha(P)=0.01315 \ 21; \ \alpha(Q)=0.000843 \ 14 \end{array}$
1408.6+y	$(25/2^+)$	243.9 [‡] 3	61 [‡] 15	1164.7+y	(23/2 ⁻)	[E1]	0.0790	α(K)=0.0596 9; α(L)=0.01446 21; α(M)=0.00360 6; α(N+)=0.001328 19

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

$\gamma(^{255}Lr)$ (continued)

E _i (level)	\mathbf{J}_i^{π}	Eγ	Iγ	E_f	J_f^π	Mult.	α #	Comments
1408.6+y	(25/2+)	300.6 [‡] 3	100 [‡] <i>12</i>	1108.0+y	(21/2 ⁺)	[E2]	0.389	$\begin{aligned} \alpha(N) = 0.001009 \ I5; \ \alpha(O) = 0.000267 \ 4; \\ \alpha(P) = 4.92 \times 10^{-5} \ 7; \ \alpha(Q) = 2.25 \times 10^{-6} \ 4 \\ \alpha(K) = 0.0893 \ I3; \ \alpha(L) = 0.215 \ 4; \ \alpha(M) = 0.0612 \\ 9; \ \alpha(N+) = 0.0230 \ 4 \\ \alpha(N) = 0.0176 \ 3; \ \alpha(O) = 0.00462 \ 7; \\ \alpha(P) = 0.000802 \ I2; \ \alpha(Q) = 1.159 \times 10^{-5} \ I7 \end{aligned}$
1469.9	$(21/2^{-})$	387 [†] 1	100	1082.9	$(17/2^{-})$			
1476.4	$(27/2^{-})$	384 [†] 1	100	1082.9	$(17/2^{-})$			
1899.9	$(25/2^{-})$	430 [†] 1	100	1469.9	$(21/2^{-})$			

 [†] From 2009Ke02, assumed E2.
 [‡] From 2009Je02 in ²⁰⁹Bi(⁴⁸Ca,2nγ).
 [#] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

 $^{255}_{103} Lr_{152}$

5

1108.0+y

972.9+y

850.4+y

740.0+y

Adopted Levels, Gammas

