²⁰⁹Bi(⁴⁸Ca,2nγ) 2009Ke01,2009Je02

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	E. Browne, J. K. Tuli	NDS 114, 1041 (2013)	1-Nov-2011

Includes 2008Ha31.

2009Ke01: E=219 and 221 MeV ⁴⁸Ca beam delivered by K130 cyclotron at JYFL. Recoils separated by gas-filled separator RITU and detected by a double-sided silicon strip detector (DSSD) of the focal plane GREAT. Detected γ -rays with JUROGAM array of 43 Compton-suppressed Ge detectors in coincidence with the detection of recoils and subsequent α -decays. Identified ²⁵⁵Lr product by the Lr *K*- α and *K*- β x rays and its α -decay. Measured E γ , I γ , delayed γ -coin with fusion-evaporation residues, α -gated γ coin, recoil-gated γ - γ coin. Observed two rotational bands.

2009Je02: E=222 MeV ⁴⁸Ca beam was produced at the 88-inch cyclotron of the LBNL Berkeley and used the Berkeley gas-filled separator (BGS). ²⁰⁹Bi target of 0.4 mg/cm² thickness with 35μ g/cm² carbon backing were mounted on a rotating target wheel. Evaporation residues were separated from the beam and then passed through a multi-wire proportional counter (MWPC) before being implanted in a double-side silicon strip detector (DSSSD). Clover Ge detectors were mounted behind the BGS focal plane. Measured recoil- α coin, recoil-electron bursts, E γ , I γ , $\gamma\gamma$, half-life for the isomeric state. Recoil- α decay tagging technique.

2008Ha31: E=219 MeV beam provided by U400 cyclotron at Dubna. VASSILISSA fragment separator. Detected evaporation residues using GABRIELA array of 16 Si strips. Detected conversion electrons using four four-strip Si strips. Measured Eγ, Iγ,

 γ (ce) coin, recoil-ce correlations using seven Ge detectors for γ rays and Si detectors for electrons. Other: 2010HaZX.

²⁵⁵Lr Levels

E(level) ^C	\mathbf{J}^{π}	T _{1/2}	Comments
$0.0^{\dagger a}$	$[1/2^{-}]$	31.1 s <i>11</i>	$T_{1/2}$: From Adopted Levels.
38 ^{‡a} 10	[7/2 ⁻]	2.54 s 5	$\%\alpha \approx 40$ (2006Ch52) J ^{π} , T _{1/2} : From Adopted Levels.
38+x ^{‡a}	$(9/2^{-})$		
y #	$(9/2^+)$		
69.5+y ^{#b} 4	$(11/2^+)$		
151.8+y ^{#b} 5	$(13/2^+)$		E(level): Y<100 keV, from the observed total energy of the isomer decay.
196.6 ^{†b} 5	$(5/2^{-})$		
227.0+x ^{‡a} 10	$(11/2^{-})$		
253.0+x ^{‡a} 10	$(13/2^{-})$		
246.5+y ^{#b} 5	$(15/2^+)$		
353.4+y ^{#b} 6	$(17/2^+)$		
443.8 ^{†a} 7	9/2-		
466.0 ^{‡a} 15	$(15/2^{-})$		
517.6+x ^{‡a} 12	$(17/2^{-})$		
740.0 ^{†a} 9	$(13/2^{-})$		
754.4+x ^{‡a} 15	$(19/2^{-})$		
740.0+y ^{&b} 5	$(15/2^+)$	<1 µs	
831.6+x ^{‡a}	$(21/2^{-})$		
850.4+y ^{&b} 6	$(17/2^+)$		
878.8+y ^{@b} 10	$(19/2^{-})$	≥10 ns	
972.9+y ^{&b}	$(19/2^+)$		
1016.3+y ^{@b} 10	$(21/2^{-})$		
1082.9 ^{†a} 10	$17/2^{-}$		
1092.4+x ^{‡a} 18	$(23/2^{-})$		
1108.0+y ^{&b} 10	$(21/2^+)$		
1191.6+x ^{‡a} 16	$(25/2^{-})$		
1164.7+y ^{@b} 10	$(23/2^{-})$		

²⁰⁹Bi(⁴⁸Ca,2nγ) 2009Ke01,2009Je02 (continued)

²⁵⁵Lr Levels (continued)

E(level) ^C	J^{π}	T _{1/2}	Comments				
1408.6+y ^b 10	(25/2+)	1.70 ms <i>3</i>	T _{1/2} : Other value: 1.4 ms <i>I</i> , from 100-keV conversion electrons observed in coincidence with 588-keV γ ray (2008Ha31); 1.81 ms 2 (2008An16).				
1469.9 ^{†a} 15	$(21/2^{-})$						
1476.4 ^{‡a} 21	$(27/2^{-})$						
1899.9 ^{†a} 18	$(25/2^{-})$						
[†] Band(A): 1/2[521] band. [‡] Band(B): 7/2[514] band. [#] Band(C): 9/2[624] band. [@] Band(D): $K=(19/2^{-})$ band. ^{&} Band(E): $K=(15/2^{+})$ band. ^a From 2009Ke02. ^b From 2009Je02. ^c Deduced by evaluators from least-squares fit to γ -ray energies.							

γ ⁽²⁵⁵ Lr)									
E_{γ}	I_{γ}	E _i (level)	\mathbf{J}_i^π	E_f	\mathbf{J}_f^π	Mult.	α #	Comments	
(28)		878.8+y	(19/2 ⁻)	850.4+y	(17/2 ⁺)	[E1]	2.68	$\begin{array}{l} \alpha(\text{L}) = 1.516 \ 22; \ \alpha(\text{M}) = 0.856 \ 12; \\ \alpha(\text{N}+) = 0.306 \ 5 \\ \alpha(\text{N}) = 0.239 \ 4; \ \alpha(\text{O}) = 0.0585 \ 9; \\ \alpha(\text{P}) = 0.00763 \ 11; \ \alpha(\text{Q}) = 0.0001590 \ 23 \end{array}$	
69.5 [‡] 4	0.10 [‡] 4	69.5+y	(11/2+)	У	(9/2+)	[M1]	41.7 10	$ \begin{array}{l} \alpha(\text{L}) = 31.1 \ 7; \ \alpha(\text{M}) = 7.75 \ 17; \ \alpha(\text{N}+) = 2.91 \ 7 \\ \alpha(\text{N}) = 2.19 \ 5; \ \alpha(\text{O}) = 0.593 \ 13; \ \alpha(\text{P}) = 0.118 \ 3; \\ \alpha(\text{Q}) = 0.00765 \ 17 \end{array} $	
82.3 [‡] <i>3</i>	0.16 [‡] 5	151.8+y	(13/2 ⁺)	69.5+y	(11/2 ⁺)	[M1]	25.5 5	α (L)=19.0 4; α (M)=4.73 9; α (N+)=1.77 4 α (N)=1.336 24; α (O)=0.362 7; α (P)=0.0723 13; α (Q)=0.00466 9	
94.7 [‡] 3	0.18 [‡] 4	246.5+y	(15/2+)	151.8+y	(13/2 ⁺)	[M1]	16.9 <i>3</i>	$\alpha(L)=12.62\ 22;\ \alpha(M)=3.14\ 6;\ \alpha(N+)=1.180$ 20 $\alpha(N)=0.888\ 15;\ \alpha(O)=0.241\ 4;\ \alpha(P)=0.0481$ 8; $\alpha(Q)=0.00310\ 6$	
107 110.4 [‡] 3	0.19 [‡] 4	353.4+y 850.4+y	$(17/2^+)$ $(17/2^+)$	246.5+y 740.0+y	$(15/2^+)$ $(15/2^+)$	[M1]	10.86 <i>18</i>	E _{γ} : From Fig. 2 in 2009Je02. α (L)=8.09 <i>13</i> ; α (M)=2.02 <i>4</i> ; α (N+)=0.756 <i>13</i> α (N)=0.569 <i>10</i> ; α (O)=0.1542 <i>25</i> ; α (P)=0.0308 <i>5</i> ; α (Q)=0.00198 <i>4</i>	
123 [‡] 1	0.13 [‡] 4	972.9+y	(19/2+)	850.4+y	(17/2 ⁺)	[M1]	7.95 22	$ \begin{array}{l} \alpha(\text{L}) = 5.92 \ 17; \ \alpha(\text{M}) = 1.48 \ 4; \ \alpha(\text{N}+) = 0.554 \\ 16 \\ \alpha(\text{N}) = 0.417 \ 12; \ \alpha(\text{O}) = 0.113 \ 4; \ \alpha(\text{P}) = 0.0225 \\ 7; \ \alpha(\text{Q}) = 0.00145 \ 4 \end{array} $	
135.2 [‡] 3	0.22 [‡] 4	1108.0+y	(21/2+)	972.9+y	(19/2+)	[M1]	6.06	$ \begin{aligned} &\alpha(L) = 4.51 \ 7; \ \alpha(M) = 1.123 \ 18; \ \alpha(N+) = 0.422 \\ &7 \\ &\alpha(N) = 0.317 \ 5; \ \alpha(O) = 0.0860 \ 14; \\ &\alpha(P) = 0.0172 \ 3; \ \alpha(Q) = 0.001101 \ 17 \end{aligned} $	
137.4 [‡] 4	0.18 [‡] 4	1016.3+y	(21/2 ⁻)	878.8+y	(19/2 ⁻)	[M1]	5.78 10	$\begin{array}{l} \alpha(\text{L})=4.31\ 7;\ \alpha(\text{M})=1.073\ 18;\ \alpha(\text{N}+)=0.402\\ 7\\ \alpha(\text{N})=0.303\ 5;\ \alpha(\text{O})=0.0821\ 14;\\ \alpha(\text{P})=0.0164\ 3;\ \alpha(\text{Q})=0.001051\ 18 \end{array}$	

 $^{255}_{103}$ Lr₁₅₂-3

			209	⁹ Bi(⁴⁸ Ca,2n	γ) 200	9Ke01,2	009Je02 (a	continued)	
$\gamma^{(255}Lr)$ (continued)									
Eγ	I_{γ}	E _i (level)	\mathbf{J}_i^π	\mathbf{E}_{f}	J_f^π	Mult.	α #	Comments	
148.3 [‡] 4	0.25 [‡] 6	1164.7+y	(23/2 ⁻)	1016.3+y	(21/2-)	[M1]	4.64 8	$\alpha(L)=3.46 \ 6; \ \alpha(M)=0.861 \ 14; \\ \alpha(N+)=0.323 \ 6 \\ \alpha(N)=0.243 \ 4; \ \alpha(O)=0.0659 \ 11; \\ \alpha(P)=0.01315 \ 21; \ \alpha(Q)=0.000843 \ 14$	
177.0 [‡] 4	0.06 [‡] 2	246.5+y	(15/2+)	69.5+y	(11/2+)	[E2]	2.79 5	$\alpha(K)=0.1218 \ 18; \ \alpha(L)=1.91 \ 4; \ \alpha(M)=0.552 \ 10; \ \alpha(N+)=0.208 \ 4 \ \alpha(N)=0.159 \ 3; \ \alpha(O)=0.0416 \ 8; \ \alpha(P)=0.00701 \ 12; \ \alpha(O)=5.54\times10^{-5} \ 9$	
189 [†] 1		227.0+x	$(11/2^{-})$	38	$[7/2^{-}]$				
196.6 [†] 5		196.6	$(5/2^{-})$	0.0	$[1/2^{-}]$				
215 [†] 1		253.0+x	$(13/2^{-})$	38+x	$(9/2^{-})$				
239 [†] 1		466.0	$(15/2^{-})$	227.0+x	$(11/2^{-})$				
243.9 [‡] 3	0.73 [‡] 11	1408.6+y	(25/2+)	1164.7+y	(23/2 ⁻)	[E1]	0.0790	α (K)=0.0596 9; α (L)=0.01446 21; α (M)=0.00360 6; α (N+)=0.001328 19 α (N)=0.001009 15; α (O)=0.000267 4; α (P)=4.92×10 ⁻⁵ 7; α (O)=2.25×10 ⁻⁶ 4	
247.2 [†] 5		443.8	9/2-	196.6	$(5/2^{-})$				
264.6 [†] 5		517.6+x	$(17/2^{-})$	253.0+x	$(13/2^{-})$				
288.4 [†] 4		754.4+x	$(19/2^{-})$						
296.2 [†] 5		740.0	$(13/2^{-})$	443.8	9/2-				
300.6 [‡] 3	1.20 [‡] 14	1408.6+y	(25/2+)	1108.0+y	(21/2+)	[E2]	0.389	$\begin{aligned} &\alpha(\text{K}) = 0.0893 \ 13; \ \alpha(\text{L}) = 0.215 \ 4; \\ &\alpha(\text{M}) = 0.0612 \ 9; \ \alpha(\text{N}+) = 0.0230 \ 4 \\ &\alpha(\text{N}) = 0.0176 \ 3; \ \alpha(\text{O}) = 0.00462 \ 7; \\ &\alpha(\text{P}) = 0.000802 \ 12; \ \alpha(\text{Q}) = 1.159 \times 10^{-5} \ 17 \end{aligned}$	
314.0 [†] 5		831.6+x	$(21/2^{-})$	517.6+x	$(17/2^{-})$				
338 [†] 1		1092.4+x	$(23/2^{-})$	754.4+x	(19/2 ⁻)				
342.9 [†] 5		1082.9	$17/2^{-}$	740.0	$(13/2^{-})$				
360 [†] 1		1191.6+x	$(25/2^{-})$	831.6+x	$(21/2^{-})$				
384 [†] 1		1476.4	$(27/2^{-})$	1082.9	$17/2^{-}$				
386.6 [‡] 4	0.23 [‡] 8	740.0+y	(15/2+)	353.4+y	(17/2 ⁺)	[M1]	1.341	α (K)=1.030 <i>15</i> ; α (L)=0.232 <i>4</i> ; α (M)=0.0576 <i>9</i> ; α (N+)=0.0216 <i>3</i> α (N)=0.01625 <i>24</i> ; α (O)=0.00440 <i>7</i> ; α (P)=0.000877 <i>13</i> ; α (Q)=5.58×10 ⁻⁵ 8	
387 [†] 1		1469.9	$(21/2^{-})$	1082.9	$17/2^{-}$				
430 [†] 1		1899.9	$(25/2^{-})$	1469.9	$(21/2^{-})$				
493.5 [‡] <i>3</i>	1.00 [‡] 14	740.0+y	(15/2 ⁺)	246.5+y	(15/2 ⁺)	[M1]	0.685	$\begin{aligned} &\alpha(\mathrm{K}) = 0.526 \ 8; \ \alpha(\mathrm{L}) = 0.1181 \ 17; \\ &\alpha(\mathrm{M}) = 0.0293 \ 5; \ \alpha(\mathrm{N}+) = 0.01098 \ 16 \\ &\alpha(\mathrm{N}) = 0.00827 \ 12; \ \alpha(\mathrm{O}) = 0.00224 \ 4; \\ &\alpha(\mathrm{P}) = 0.000446 \ 7; \ \alpha(\mathrm{Q}) = 2.83 \times 10^{-5} \ 4 \end{aligned}$	
588.1 [‡] 3	0.91 [‡] <i>15</i>	740.0+y	(15/2+)	151.8+y	(13/2 ⁺)	[M1]	0.424	$\begin{aligned} &\alpha(K) = 0.326 \ 5; \ \alpha(L) = 0.0729 \ 11; \\ &\alpha(M) = 0.0181 \ 3; \ \alpha(N+) = 0.00677 \ 10 \\ &\alpha(N) = 0.00510 \ 8; \ \alpha(O) = 0.001380 \ 20; \\ &\alpha(P) = 0.000275 \ 4; \ \alpha(Q) = 1.746 \times 10^{-5} \ 25 \end{aligned}$	

[†] From 2009Ke02, assumed E2. [‡] From 2009Je02. Intensities are relative to $I\gamma(493.5)=1.00$.

[#] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

 $^{255}_{103} Lr_{152}$

4

1108.0+y

972.9+y

850.4+y

740.0+y

135

110

209 Bi(48 Ca,2n γ) 2009Ke01,2009Je02

 $^{255}_{103}$ Lr $_{152}$