²⁵⁵Md ε decay 2000Ah02,1970Fi12

History								
Туре	Author	Citation	Literature Cutoff Date					
Full Evaluation	E. Browne, J. K. Tuli	NDS 114, 1041 (2013)	1-Nov-2011					

Parent: ²⁵⁵Md: E=0.0; $J^{\pi}=(7/2^{-})$; $T_{1/2}=27 \text{ min } 2$; $Q(\varepsilon)=1043 8$; $\%\varepsilon+\%\beta^{+}$ decay=93 1

²⁵⁵Md-%ε+%β⁺ decay: From I(K x ray)/α = 11.2 *10* (1970Fi12), Iγ(169γ)=6.4 7, Iγ(231γ)=9.2 *1* (2000Ah02), using theoretical conversion coefficients (BrIcc) $\alpha(K)(169\gamma, M1+50\%E2)=6.4$, and $\alpha(K)((231\gamma, M1+50\%E2)=2.5$, and theoretical values of pk=ε(K)/ε(total)=0.71 and $\omega(K)=0.976$).

Additional information 1.

1970Fi12: Activity produced by irradiating with α particles a target of ²⁵³Es, ²⁵⁴Es, and ²⁵⁵Es, E=46 MeV. Md was chemically separated from fission products. Measured α particles, γ rays, Fm K x ray. Detectors: Au-Si for α particles, Ge(Li) for γ and x rays, and Au-Si, Na I for $\alpha\gamma$ coin.

2000Ah02: Activity produced by 253 Es(α ,2n), E=35-45 MeV. Measured α particles, γ rays, $\alpha\gamma$ coin, x rays. Detectors: Si for α particles,Ge(Li) for γ rays and Fm K x ray.

²⁵⁵Fm Levels

E(level)	J^{π}		
0.0 [†]	7/2+		
61.7 [†] 3	$(9/2^+)$		
231.1 [‡] 2	$(9/2)^+$		

[†] Band(A): 7/2(613).

[‡] Band(B): 9/2(615).

ε, β^+ radiations

E(decay)	E(level)	$I\varepsilon^{\dagger}$	Log ft	Comments
(812 8) (981 8)	231.1 61.7	29 <i>4</i> 64 <i>4</i>	5.56 <i>6</i> 5.47 <i>4</i>	ε K=0.7046 8; ε L=0.2145 6; ε M+=0.08095 25 ε K=0.7175; ε L=0.2056 4; ε M+=0.07691 16 I(ε + β^+): ε feeding is to g.s. and 61.6-keV level.

^{\dagger} For absolute intensity per 100 decays, multiply by 0.93 *1*.

$\gamma(^{255}{\rm Fm})$

I γ normalization: From total number of vacancies = I(K x ray) x (ε (K)/ ε (total)) (theory) x 1/ ω (K)=175 12 x 1.408/0.971 = 254 17. Then I γ normalization=93 1/254 17 = 0.37 3.

Fm $I\gamma(K\alpha_2 \ x \ ray) = 65 \ 4$, $I\gamma(K\alpha_1 \ x \ ray) = 100$, $I\gamma(K\beta_1' \ x \ ray) = 35 \ 2$, $I\gamma(K\beta_2' \ x \ ray) = 14 \ 1 \ (2000Ah02)$.

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger \ddagger}$	E_i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult.
(61.7)		61.7	$(9/2^+)$	0.0	7/2+	
169.6 2	6.4 7	231.1	$(9/2)^+$	61.7	$(9/2^+)$	[M1+E2]
231.4 2	9.2 10	231.1	$(9/2)^+$	0.0	7/2+	[M1+E2]

[†] From 2000Ah02.

^{\ddagger} For absolute intensity per 100 decays, multiply by 0.36 *3*.

²⁵⁵Md ε decay 2000Ah02,1970Fi12

²⁵⁵Md ε decay 2000Ah02,1970Fi12

