Adopted Levels, Gammas

History								
Туре	Author	Citation	Literature Cutoff Date					
Full Evaluation	Balraj Singh	ENSDF	26-Jun-2023					

 $S(n)=8510 \ syst; \ S(p)=2610 \ syst; \ Q(\alpha)=9210 \ syst$ 2021Wa16

Estimated uncertainties (2021Wa16): 500 for S(n), 330 for S(p), 200 for Q(α).

Q(ε)=3560 300, S(2p)=4250 280, Q(εp)=1550 280 (syst, 2021Wa16). S(2n)=15890 (theory, 2019Mo01).

A dataset in the XUNDL database, compiled from 2015Da12 by J. Chen (NSCL, MSU) was used in this evaluation.

1997He29: 254 Rf produced and identified in 206 Pb(50 Ti,2n) reaction, followed by measurement of T_{1/2} from SF decay.

Later measurements of half-lives: 2008Dr05, 2015Da12.

2008Dr05: ²⁰⁸Pb(⁴⁸Ti,2n),E=4.6-4.8 MeV/nucleon; the beam provided by 88-Inch cyclotron at LBNL. Detected charged particles using a focal plane detector and a double-sided silicon strip detector. Half-life of ²⁵⁴Rf and production cross section measured based on subsequent α decay of ²⁵⁴Rf.

- 2015Da12: two experiments were performed using ²⁰⁶Pb(⁵⁰Ti,2n) reaction: 1. E=242.5 MeV ⁵⁰Ti beam produced at ATLAS-ANL facility was incident on a 0.5 mg/cm² 99.948% enriched ²⁰⁶Pb target. Recoiling residues were separated and selected using the Fragment Mass Analyzer (FMA) and implanted into a 100 μ m-thick, double-sided silicon strip detector (DSSD) at the focal plane. Spontaneous-fission (SF) events were identified based on spatial and temporal correlations between implanted residues and high-energy (>100 MeV) decay events in DSSD. Measured energies of reaction products, conversion electrons, implant-decay correlations. 2. E=244 MeV ⁵⁰Ti beam produced at the LBNL cyclotron facility was incident on a 0.5 mg/cm² ²⁰⁶Pb target. Recoiling residues were separated and selected by the Berkeley Gas-filled Separator (BGS) and implanted into three 1-mm-thick, double-sided silicon-strip detectors (DSSDs), with emitted γ rays detected with a clover HPGe detector behind each DSSD. Measured energies of reaction products, E γ , I γ , conversion electrons, implant-decay correlations. Deduced evidence and T_{1/2} for two isomers in ²⁵⁴Rf using a novel approach involving a pulse-shape analysis of data acquired with a digital data acquisition system. Comparison with multi-quasiparticle calculations. A total of 28 and 723 SF events from ²⁵⁴Rf were identified in the two experiments, respectively. The two isomers were identified based on observed electron-SF and/or electron-sF correlations following the decay of the isomers, with 82 electrons associated with the shorter-lived 2-qp isomer and 11 electrons with the longer-lived 4-qp isomer. The absence of sizable fission branches from either of the isomers implies unprecedented fission hindrance relative to the ground state.
- 2020Kh01: $E({}^{50}Ti)=242.5$ MeV pulsed beam from the UNILAC-GSI facility. This beam energy corresponds $E({}^{256}Rf^*)=23.3$ MeV excitation energy for the compound nucleus. The evaporation residues passed through the gas-filled recoil separator TASCA at GSI. The focal plane detector of TASCA consisted of a multi-wire proportional counter (MWPC) and double-sided silicon strip detectors (DSSDs), and eight DSSDs (box detectors) to detect the backward escaping α particles and fission fragments. Measured energy spectrum of the fission events of ${}^{256}Rf$ compound nucleus, spatially and time correlated events from implanted evaporation residues (ERs), fission fragments, α particles, and conversion electrons from the decay of isomeric activity. A total of 22 (ERs)(fission fragment)-correlated events were detected within a time range of 50 μ to 10 s, out of which 20 events were in the correlated time of much less than 1 ms. Small-energy signals were interpreted as arising from the detection of conversion electrons.
- 2020Kh01 reported one ER-trace, correlated to the fission of 254 Rf, with additional two small signals detected, corresponding to the first and second electrons, registered at 0.65 μ s and 13.5 μ s after the preceding signals, which might indicate decays of two short-lived isomeric states, but with no definite conclusion for the presence of such isomers.
- 2020SvZZ: ²⁵⁴Rf produced in ²⁰⁶Pb(⁵⁰Ti,2n) reaction at the U400 cyclotron of FLNR, JINR, and fragments separated using SHELS separator. Investigated characteristics of spontaneous fission with measurement of mean number of neutrons per fission for ²⁵⁴Rf v=3.87 *34*.

Theoretical nuclear structure calculations:

2022Ma70: calculated negative-parity energy levels, transition dipole, quadrupole and octupole moments using the cluster model of a dinuclear system.

2021Ya34: calculated energy levels, J^{π} , deformation parameters, S(2n), charge and neutron radii, neutron skin using the relativistic Hartree-Bogoliubov (RHB) framework.

2020Ta21: calculated superdeformed minima, β_2 , β_3 , second fission barrier using covariant density functional theory (CDFT). 2018Re07: calculated energies of 2⁻ phonon levels, B(E3) using QRPA with Gogny D1M parametrization.

2015Ag09: calculated binding energies, proton and neutron quadrupole deformations, charge radius, root-mean square (rms) proton radius, neutron skin thickness, S(2n), S(2p) using relativistic Hartree-Bogoliubov theory with DD-PC1 and PC-PK1 interactions, and covariant energy density functionals.

Adopted Levels, Gammas (continued)

2014Af04: calculated kinematic moments of inertia for g.s. rotational band using covariant density functional theory.

2014Li15: calculated level energies, $Q(\alpha)$ values, β_2 , β_4 and β_6 for ground and two- and four-quasiparticle high-K isomers, and configuration-constrained potential energy surfaces (PES).

2014Wa25: calculated single-particle levels, deformation parameters, moment of inertia, band crossing using total Routhian surface method.

2012Jo05: calculated level energies and configurations of $2^+ \gamma$ -vibrational states using quasiparticle-phonon model.

2011Jo09: calculated energies, J^{π} for collective states using quasiparticle phonon model.

2006Sh19: calculated levels, J^{π} , rotational bands, transition dipole and quadrupole moments using cluster model.

2001Mu06: calculated level energy of 2⁺ state, $Q(\alpha)$, α -decay branching ratios using macroscopic-microscopic approach.

Other theoretical calculations (levels, J^{π} , bands, B(E λ), decay characteristics for α and SF: 18 references for structure and 39 for decays retrieved from the NSR database are listed in 'document' records.

Additional information 1.

²⁵⁴Rf Levels

Cross Reference (XREF) Flags

A 206 Pb(50 Ti,2n γ)

E(level) [†]	\mathbf{J}^{π}	T _{1/2}	XREF	Comments
0	0^{+}	22.8 µs 11	A	%SF≈100; %α<1.5 (1997He29)
		,		Only the SF-decay mode has been detected. An upper limit of 1.5% was given by 1997He29 from non-observation of α particles and the total number of 155 SF events detected.
				T _{1/2} : weighted average of 20 μ s 3 (2020Kh01, time distribution of 56 ER-fission correlated events); 23.2 μ s 11 (2015Da12); and 23 μ s 3 (1997He29,1999He11). Other: 29.6 μ s +7-6 (2008Dr05). If the value from 2008Dr05 is considered, then
				the unweighted average is 24.0 μ s 20 and the weighted average is 27.7 μ s 78, but with an unacceptable reduced χ^2 =12. Earlier assignments of T _{1/2} <3 ms in 1975Og01 and \approx 5 ms in 1975Te01 (both from the same laboratory) are most likely erroneous, as e.g. assignment of SF activity to ²⁵⁴ Rf in 1975Te01 was inconclusive, as communicated privately by the first author 1975Te01 to the
				authors of 1997He29.
				Production σ =0.40 nb +27-17 in ²⁰⁸ Pb(⁴⁸ Ti,2n), E=4.6-4.8 MeV/nucleon (2008Dr05).
				Production σ =3.8 nb 4 for ²⁵⁴ Rf at E(⁵⁰ Ti)=242.5 MeV (2020Kh01).
48 ^{‡#} calc	(2^{+})		Α	
158 ^{‡#} calc	(4^{+})		Α	
330 [#]	(6^{+})		Α	
562 [#]	(8^{+})		Α	
847 [#]	(10^{+})		Α	
1186 [#]	(12^{+})		A	
1570 [#]	(14^{+})		A	
X	(8-)	4.3 μs 10		%IT≈100; %SF<10 (2015Da12)
				A cluster of three counts at 853 keV and two counts at 829 keV is seen in the spectrum of γ rays coincident with electrons, indicating two other possible transitions associated with the 2-qp isomer (2015Da12).

%SF<10%, deduced by 2015Da12 assuming 10 fissions from the 2-qp isomer, which is one standard deviation departure in the time interval between 1 μ s and 9 μ s in the ground-state decay-time distribution. No definitive evidence was found for this fission branch.

2020Kh01 estimated 16% 5 of all the ERs assigned to the decay of ²⁵⁴Rf were observed with conversion electrons (CEs), which indicated isomeric yield in the

Adopted Levels, Gammas (continued)

²⁵⁴Rf Levels (continued)

E(level) [†]	\mathbf{J}^{π}	T _{1/2}	XREF	Comments	
				 reaction. E(level): x>1350 (2015Da12), from the sum of the 450-keV maximum energy of conversion electrons emitted from this isomer and the 893-keV γ-ray energy measured in prompt coincidence with those electrons. T_{1/2}: weighted average of 4 μs 1 (2020Kh01, time distributions of electron-like signals relative to ERs correlated with fission fragments); and 4.7 μs 11 (2015Da12, decay time distribution of electrons emitted by the isomer). 	
				J^{π} : proposed configuration= $v7/2[624] \otimes v9/2[734]$, $K^{\pi}=8^{-}$ (2015Da12).	
у	(16^{+})	247 μs 73		%SF<40 (2015Da12); %IT≈100	
				%SF<40%, deduced by 2015Da12, assuming that all the six fission events in the time interval of the 4-qp isomer decays originated from this isomer, although these six fission events could also be associated with the ground-state fission events following decays of the 4-qp isomer which may have escaped detection.	
				2020Kh01 mentioned that with their experimental arrangement it was not possible to detect the $247-\mu$ s isomer.	
				E(level): y>x (2015Da12), based on the longer-lived 4-qp isomer feeding the shorter-lived one, which is supported by the observed event chains of two successive electron bursts detected in between the implantation and the ²⁵⁴ Rf ground-state fission and by the measured decay times of the first and second generation electrons in these events. J^{π} : proposed configuration=($v7/2[624]+v9/2[734])\otimes (\pi7/2[514]+\pi9/2[624]), K^{\pi}=16^+$	
				(2015Da12).	
				$T_{1/2}$: from decay time distribution of electrons emitted by the isomer (2015Da12).	

 † From Ey data, unless otherwise indicated.

[‡] Deduced by 2023Se09 from fit to the 172-, 232-, 285-, 339-, and 384 keV γ -ray energies using the Harris formula. The low-energy transition from the level was not seen in the gamma spectrum as it is expected to be heavily converted.

[#] Band(A): $K^{\pi}=0^+$, g.s. band. Using the Harris formula, the (16⁺) and 18⁺ members of the band were predicted by 2023Se09 at 1992 keV and 2462 keV, respectively, the (16⁺) decaying by 420-keV γ and (18⁺) by 470-keV γ .

 $\gamma(^{254}\text{Rf})$

E_i (level)	\mathbf{J}_i^{π}	E_{γ}	E_f	J_f^π
330	(6+)	172	158	(4^+)
562	(8^{+})	232	330	(6^{+})
847	(10^{+})	285	562	(8^+)
1186	(12^{+})	339	847	(10^{+})
1570	(14^{+})	384	1186	(12^{+})

Adopted Levels, Gammas

Level Scheme

Adopted Levels, Gammas

