²⁰⁶Pb(⁵⁰Ti,2nγ) 2023Se09

History							
Туре	Author	Citation	Literature Cutoff Date				
Full Evaluation	Balraj Singh	ENSDF	22-Jun-2023				

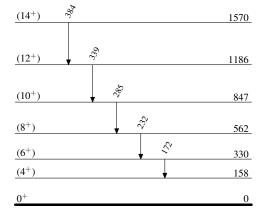
2023Se09: $E({}^{50}Ti=244 \text{ MeV}$ from the ATLAS-ANL facility. Targets were 95.9% enriched in ${}^{206}Pb$ and 0.5 mg/cm² thick with a 40 μ g/cm² carbon layer on the front and 10 mg/cm² carbon layer on the back. Measured reaction products and recoiling from the target using the Argonne gas-filled analyzer (AGFA) and double-sided Si strip detector (DSSD), $E\gamma$, K_{α} and $K_{\beta} x$ rays, (${}^{254}Rf$ recoils) γ -coin, (fission decays from ${}^{254}Rf$) γ -coin using the Gammasphere array with 65 and 70 detectors. The ${}^{254}Rf$ nuclei were identified through the observation of Rf K_{α} and $K_{\beta} x$ rays in coincidence with implants confirmed the assignment of γ rays to ${}^{254}Rf$. Deduced ground-state rotational band up to 14⁺, and kinematic moment of inertia. Comparison with particle-number conserving cranked shell model (PNC-CSM) calculations. Statistics are low in this experiment as shown in the (${}^{254}Rf$) γ -coin spectral Fig. 3 in 2023Se09, where the identified γ -ray peaks (172, 232, 285, 339 and 384) have a total of \approx 15 counts, with five counts in the 172-keV peak assigned as $6^+ \rightarrow 4^+$ transition.

²⁵⁴Rf Levels

E(level) [†]	J^{π}		
0#	0+		
48 ^{‡#} calc	(2^{+})		
158 ^{‡#} calc	(4 ⁺)		
330 [#]	(6^{+})		
562 [#]	(8+)		
847 [#]	(10^{+})		
1186 [#]	(12^{+})		
1570 [#]	(14^{+})		

[†] From E γ data, unless otherwise indicated.

^{\ddagger} Deduced by 2023Se09 from fit to the 172-, 232-, 285-, 339-, and 384 keV γ -ray energies using the Harris formula. The low-energy transition from the level was not seen in the gamma spectrum as it is expected to be heavily converted.


[#] Band(A): $K^{\pi}=0^+$, g.s. band. Using the Harris formula, the (16⁺) and 18⁺ members of the band were predicted by 2023Se09 at 1992 keV and 2462 keV, respectively, the (16⁺) decaying by 420-keV γ and (18⁺) by 470-keV γ , with two counts for the 470-keV in the (²⁵⁴Rf) γ -coin spectrum.

Eγ	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	J_f^π
172	330	(6+)	158	(4^{+})
232	562	(8^{+})	330	(6^{+})
285	847	(10^{+})	562	(8^{+})
339	1186	(12^{+})	847	(10^{+})
384	1570	(14^{+})	1186	(12^{+})

$\gamma(^{254}\text{Rf})$

²⁰⁶Pb(⁵⁰Ti,2nγ) 2023Se09

Level Scheme

2023Se09

²⁰⁶**Pb**(⁵⁰**Ti,2n**γ)

Band(A): $K^{\pi}=0^+$, g.s. band (14+) 1570 384 (12^{+}) 1186 339 (10+) 847 285 **(8**⁺) 562 232 (6+) 330 172 (4+) 158 (2+) 48 0+ 0

 $^{254}_{104}\mathrm{Rf}_{150}$