Adopted Levels, Gammas

			History	
	Туре	Author	Citation	Literature Cutoff Date
	Full Evaluation	Balraj Singh	NDS 156, 1 (2019)	31-Jan-2019
$Q(\beta^{-}) = -5150 SY; S(n) = 7707 I.$	2; S(p)=3740 <i>SY</i> ;	Q(α)=8226 8	2017Wa10	
Estimated uncertainties (2017W	a10): 300 for Q(β	⁻), 30 for S(p).		
S(2n)=14291 13, S(2p)=6670 1	1 (2017Wa10).			
Production and assignment of ²	⁵⁴ No isotope:			
1958Gh40, 1966Do04: parent o	f ²⁵⁰ Fm; chemistr	у.		
1966Do04: ²³⁸ U(²² Ne,6n); exci	tation function.			
1966Za04: ²⁴³ Am(¹⁵ N,4n); pare	ent of ²⁵⁰ Fm.			
1967Gh01: ²⁴⁶ Cm(¹² C,4n); exc	itation function.			
1967Mi03: ²⁴² Pu(¹⁶ O,4n); excit	tation function.			
1988Tu07: ²⁰⁸ Pb(⁴⁸ Ca,2n); che	mistry; grandparer	nt of ²⁴⁶ Cf.		
Consult the NSR database at we different reactions.	ww.nndc.bnl.gov f	or numerous pag	pers since 1988 for the	e production cross sections of ²⁵⁴ No in
2018It04: measured mass exces	s=84675 keV 42(s	stat) 19(syst) usi	ng multireflection time	e-of-flight mass spectrograph at
GARIS-RIKEN facility. The	is value can be con	mpared to evalu	ated mass excess of 84	1723.4 keV 93 in 2017Wa10.
2012Mi27: measured mass exce	ess using time-of-f	light ion-cyclotr	on-resonance method.	
2010Bl04, 2010Bl03, 2010Dw0	1: measured mass	using SHIPTRA	AP Penning trap spectr	cometer at GSI.
Theoretical studies: consult the	NSR database at	www.nndc.bnl.g	ov for 100 references	dealing with theoretical calculations of
half-lives for different decay	modes, binding e	energies, fission	characteristics, level p	roperties, moments and deformations.
Additional information 1.				
			²⁵⁴ No Levels	

The decay scheme of the $184-\mu$ s isomer has been studied by 2010He10 at GSI, and by 2010Cl01 at LBNL. Very different decay schemes were proposed in the two experiments, although a similar rotational band, but with different J^{π} values and configuration, was assigned in both the studies. 2016WaZW conducted an independent experiment at Jyvaskyla (JYFL) to resolve the difference between the two studies. The author favored the decay scheme given by 2010He10, with a possible difference that the 605-keV transition deexcited the isomer directly rather than through an intermediate level as suggested by 2010He10. However, 2016WaZW concluded with the following statement about the 605-keV transition: "The 605 keV rays seen at the focal plane in coincidence with the decay of the fast isomer confirm that there is a transition with this energy in ²⁵⁴No somewhere between the two isomers, but it does not give any more information about where in the level scheme the transition should be placed. Any of the level schemes in figure 9.1 is consistent with this observation". Evaluator also consulted Prof. R.-D. Herzberg, thesis advisor of 2016WaZW, as well as the first author of 2006He19 paper for his opinion on the current status of the decay scheme could be adopted, and that future experiments with more advanced detector arrays are needed to investigate the decay scheme between the two isomers: 184 μ s and 265 ms. Thus, while the two currently proposed decay schemes are presented in this evaluation as separate datasets, no decay scheme has been adopted in this dataset.

Cross Reference (XREF) Flags

			A B C		A B C			
E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	XREF	Comments				
0.0#	0+	51.2 s 4	BC	$%\alpha$ =90 1; %ε=10 1 (2010He10); %SF=0.17 2 (1994Hu18) Measured δv (²⁵⁴ No, ²⁵³ No)=6.72 GHz 18; δv (²⁵⁴ No, ²⁵² No)=10.08 GHz 69; δ <r<sup>2>(²⁵⁴No,²⁵³No)=-0.070 fm² 2(stat) 5(syst); δ<r<sup>2>(²⁵⁴No,²⁵²No)=-0.105 fm²</r<sup></r<sup>				

Continued on next page (footnotes at end of table)

²⁵⁴No Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	XREF	Comments		
				7(stat) 7(syst) (2018Ra11, laser atomic spectroscopy using radiation detected resonance ionization spectroscopy (RADRIS) technique at SHIP-UNILAC-GSI facility.		
				Measured $\%\varepsilon$ =10 <i>I</i> , $\%$ SF=0.23 <i>I0</i> (2010He10) from the number of α decays and fission events from ²⁵⁴ No and the number of α decays from ²⁵⁴ Fm. Measured $\%\varepsilon$ =10 <i>4</i> , $\%$ SE=0.25 + 20 - <i>II</i> (1988Tu07) from α and fission activities of		
				²⁵⁴ No, and α activities of ²⁵⁴ Fm and ²⁴⁶ Cf.		
				Measured %SF=0.17 5 (1989La07) by comparing g.s. SF activity yield with α activity yields for ²⁴⁶ Cf and ²⁴² Cm; %SF=0.17 2 (1994Hu18) from the ratio of α and SF events: $\%\alpha\approx10$ (1979Or02)		
				T _{1/2} : from 2006He19, decay curve for 8.1-MeV α peak. Others: 48 s 3 (1999Le42), 53 s 20 (1994Hu18), 54 s +8-6 (1989La07), 53 s +46-24 (1988Tu07), 68 s +36-18 (1985He22), 75 s 15 (1967Mi03), 52 s 5 (1967Gh01, value of 55 s 5 measured relative to T _{1/2} (²¹⁴ Ra)=2.6 s was corrected by 1999Le42 for ²¹⁴ Ra half-life), 50 s 10 (1966Do04). Weighted average of all the values is also 51.2 s 4 with reduced χ^2 =0.5.		
				$T_{1/2}$: $T_{1/2}(SF)>25$ h, estimated by 1966Fl04.		
44.2 [#] 4	2+		BCDEF	Additional information 2. E(level): from 208 Pb(48 Ca,2n γ), estimated by 1999Le42 from Harris parameters		
145.0# 7	4+			extracted for the g.s. rotational band.		
$145.2^{"}$ /	4 ·		CDEF			
504.0^{-7}	0' 0+		CDEF			
786.0 [#] 8	0 10 ⁺		CDEF			
987.5 [@] 8	(3 ⁺)		CDEF	J ^{π} : γ rays to 2 ⁺ and 4 ⁺ . Probable configuration= $\pi 1/2[521] \otimes \pi 7/2[514]$, $K^{\pi} = (3^+)$ (2006He19).		
1033.2 [@] 11	(4^{+})		CDE	J^{π} : γ rays to (3 ⁺) and 4 ⁺ ; band member.		
1091.1 [@] 9	(5 ⁺)		CDE	J^{π} : γ rays to (3 ⁺) and 6 ⁺ ; band member.		
1104.1 [#] 8	12+		F			
1160.3 [@] 9	(6 ⁺)		CDE	J^{π} : γ rays to (4 ⁺) and 6 ⁺ ; band member.		
1243.1 [@] 9	(7^{+})		CDE	J^{π} : γ rays to (5 ⁺) and 6 ⁺ ; band member.		
1296.4 ^{&} 11	(8 ⁻)	265 ms 2	CDE	%IT=100; %SF=0.020 <i>12</i> (2010He10); %α≤0.01 (2010He10) E(level): other: 1295 keV 2 (2010He10), 1297 keV 2 (2010Cl01). T _{1/2} : weighted average of 263 ms 2 (2010Cl01, recoil-ce(t)); 275 ms 7 (2010He10, recoil-ce(t)); 266 ms <i>10</i> (2006Ta19, summed electron spectrum decay curve); 266 ms 2 (2006He19, recoil-ce(t)). Other: 0.28 s 4 (1973Gh03, first identification of the isomer).		
				J ^{π} : 2010He10, 2006Ta19 and 2006He19 proposed π 9/2[624] $\otimes \pi$ 7/2[514], K^{π} =8 ⁻ . However, 2010He10 and 2006He19 suggested that long half-life of this isomer may be due to contribution from 2-neutron configurations of v 7/2[624] $\otimes v$ 9/2[734] and v 7/2[613] $\otimes v$ 9/2[734], K^{π} =8 ⁻ . 2010Cl01 proposed v 7/2[613] $\otimes v$ 9/2[734], K^{π} =8 ⁻ configuration.		
				See 2015Ko14 evaluation for γ -transition hindrance factors.		
1407 8 11	(0^{-})		DE	unobservedGammaIntensity=49 2:From 20 No 11 decay (265 ms).		
1407.8 11 1470.7 [#] 8	(9) 14 ⁺		DE F			
1530.8 15	(10^{-})		DE	J^{π} : γ to (9 ⁻), band member.		
$1530.8 + x^{a}$	J1		DE	Additional information 3.		
				E(level): this level is the 1532.0, (10^-) level in ²⁵⁴ No IT decay (184 μ s):GSI (2010He10), but at 2013.2, (10^+) in ²⁵⁴ No IT decay (184 μ s):LBNL (2010Cl01) decaying through 481.8 and 605.2 γ rays. 2016WaZW did not confirm the existence of the 482 γ , and the 605 γ was placed from a 2917-keV level feeding the		

Continued on next page (footnotes at end of table)

²⁵⁴No Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	XREF	Comments		
				top member of the K=8 band. 2016WaZW suggested a possible placement of the 605γ directly from the isomer, but left open other possibilities. J ₁ =10 ⁻ in 2010He10, 10 ⁺ in 2010Cl01.		
1664.4+x ^{<i>a</i>} 1	J1+1		DE			
1809.1+x ^a 8	J1+2		DE			
1883.4 [#] 8	16^{+}		F			
1966.1+x ^{<i>a</i>} 8	J1+3		DE			
2134.4+x ^{<i>a</i>} 8	J1+4		DE			
2314.8+x ^{<i>a</i>} 8	J1+5		DE			
2314.8+y	(16)	184 μs <i>3</i>	DE	$\%$ IT=100; $\%$ SF \le 0.012 (2010He10)		
				Additional information 4. This isomer was defined at 3001 keV with an \approx 84–keV transition deexciting it in ²⁵⁴ No IT decay (184 µs):GSI (2010He10), and possibly at 2917 keV with direct deexcitation through the 605-keV γ ray by 2016WaZW. 2010Cl01 assigned it from 2928 keV with 312.4 and 133.4 gamma rays deexciting it in ²⁵⁴ No IT decay (184 µs):LBNL. E(level): 3001 keV 3 (2010He10), 2917 keV (2016WaZW); 2928 keV 3 (2010Cl01). T _{1/2} : weighted average of 184 µs 2 (2010Cl01, recoil-ce-ce(t)); 198 µs 13 (2010He10, recoil-ce(t)); 171 µs 9 (2006Ta19, summed electron decay curve). J ^π : configuration=(π 7/2[514] \otimes π 9/2[624]) ₈ -(ν 7/2[613] \otimes ν 9/2[734]) ₈ -, K^{π} =16 ⁺ (2010Cl01). In 2010He10, ν 7/2[613] orbital is replaced by ν 7/2[624]. See 2015Ko14 evaluation for γ -transition hindrance factors, where the isomer is considered to deexcite directly through the 605 γ .		
2339.4 [#] 9	18^{+}		F			
2837.4 [#] 14	(20^{+})		F			
3373.4 [#] 17	(22^{+})		F			
3943.4? [#] 20	(24^{+})		F			

 † From least-squares fit to $E\gamma$ data, assuming uncertainty of 1 keV when not stated.

[‡] From band structures as proposed in several studies using 208 Pb(48 Ca,2n γ) reaction. Members of the ground-state from 4⁺ to 12⁺ are supported by E2 intraband transitions, higher members from continuing γ cascade.

[#] Band(A): $K^{\pi}=0^+$, g.s. band. No indication of a backbend was found. The quadrupole deformation of $\beta(2)=0.27$ 3 was deduced by 1999Le42 from E(2⁺ state)=44.2 4, extrapolated from neighboring E(2⁺ states).

 $\gamma(^{254}\text{No})$

[@] Band(B): $\pi 1/2[521] \otimes \pi 7/2[514], K^{\pi} = (3^+)$ band.

& Band(C): $K^{\pi} = (8^{-})$ band.

^{*a*} Band(D): $\Delta J=1$ band.

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [†]	$\alpha^{@}$
44.2	2+	(44.2 4)	100	0.0	0^{+}	[E2]	1510 70
145.2	4+	101.1 6	100	44.2	2+	E2	30.0 10
304.6	6+	159.5 2	100	145.2	4+	E2	3.94
518.7	8+	214.1 <i>I</i>	100	304.6	6+	E2	1.204
786.0	10^{+}	267.3 1	100	518.7	8+	E2	0.535
987.5	(3 ⁺)	842 1	36 [‡] 9	145.2	4+		
		943 1	100 [‡] 16	44.2	2+		
1033.2	(4^{+})	(45)		987.5	(3 ⁺)		

γ (²⁵⁴No) (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}	E_f	\mathbf{J}_f^{π}	Mult. [†]	α [@]	Comments
1033.2 1091.1	(4 ⁺) (5 ⁺)	887 (58) 103 786 <i>1</i>		145.2 1033.2 987.5 304.6	$ \begin{array}{c} 4^+ \\ (4^+) \\ (3^+) \\ 6^+ \end{array} $			
1104.1 1160.3	12 ⁺ (6 ⁺)	318.1 2 69 126 856	100	786.0 1091.1 1033.2 304.6	10 ⁺ (5 ⁺) (4 ⁺) 6 ⁺	(E2)	0.300	
1243.1	(7 ⁺)	82 151 940	100 [‡] 110 [‡] 40	1160.3 1091.1 304.6	(6 ⁺) (5 ⁺) 6 ⁺			
1296.4	(8-)	53 778	$100^{\ddagger} 7$ $14^{\ddagger} 4$	1243.1 518.7	(7 ⁺) 8 ⁺	(E1) [F1]	0.83 <i>5</i> 0.0085	
1407.8	(9 ⁻)	111.4 2	100	1296.4	(8 ⁻)	[M1]	9.51	E_{γ} : average of 111.4 2 in ²⁵⁴ No IT decay (184 μs):GSI, and 111.4 3 in ²⁵⁴ No IT decay (184 μs):LBNL
1470.7 1530.8	14^+ (10 ⁻)	366.6 2 123	100	1104.1 1407.8	12^+ (9 ⁻)	[E2]	0.195	
1664.4+x	J1+1	133.3 <i>I</i>	100	1530.8+x	J1			E_{γ} : average of 133.3 <i>l</i> in ²⁵⁴ No IT decay (184 μs):GSI, and 133.4 <i>d</i> in ²⁵⁴ No IT decay (184 μs):LBNL.
1809.1+x	J1+2	145 <i>1</i>	100	1664.4+x	J1+1			E_{γ} : from ²⁵⁴ No IT decay (184 μ s):LBNL.
1883.4	16+	412.7 2	100	1470.7	14+	[E2]	0.1397	254
1966.1+x	J1+3	156.9 2	100 17	1809.1+x	J1+2			E_{γ} : average of 156.9 2 in ²⁵⁴ No IT decay (184 μ s):GSI, and 156.9 3 in ²⁵⁴ No IT decay (184 μ s):LBNL.
		302		1664.4+x	J1+1			E_{γ} : from ²⁵⁴ No IT decay (184 μ s):GSI.
2134.4+x	J1+4	168.5 <i>1</i>	100 [#] 17	1966.1+x	J1+3			E_{γ} : average of 168.5 <i>l</i> in ²⁵⁴ No IT decay (184 μs):GSI, and 168.9 <i>3</i> in ²⁵⁴ No IT decay (184 μs):LBNL.
		325.5 5	83 [#] 33	1809.1+x	J1+2			E_{γ} : 325 in ²⁵⁴ No IT decay (184 μs):GSI, and 325.5 5 in ²⁵⁴ No IT decay (184 μs):LBNL.
2314.8+x	J1+5	179.5 <i>1</i>	100 13	2134.4+x	J1+4			E_{γ} : average of 179.5 <i>I</i> in ²⁵⁴ No IT decay (184 μs):GSI, and 179.4 <i>3</i> in ²⁵⁴ No IT decay (184 μs):LBNL.
		347.2 2	76 22	1966.1+x	J1+3			E_{γ} : average of 347.1 2 in ²⁵⁴ No IT decay (184 μs):GSI, and 347.5 5 in ²⁵⁴ No IT decay (184 μs):LBNL.
								I_{γ} : average of 57 22 in ²⁵⁴ No IT decay (184 μs):GSI, and 100 25 in ²⁵⁴ No IT decay (184 μs):LBNL.
2339.4	18+	456.0 3		1883.4	16+			
2837.4	(20^+)	498 1		2339.4	18^+			
33/3.4 2042 42	(22^{+})	530 I 570&		2837.4	(20^{+})			
J74J.4 ((24)	570		5515.4	(22)			

[†] For gamma rays from the g.s. rotational band members, and for the (3⁺) bandhead, energies, γ -ray branching ratios, and multipolarity assignments are from ²⁰⁸Pb(⁴⁸Ca,2n γ):prompt γ . The multipolarity assignments are based on internal conversion data. For γ rays from the (4⁺) and higher members of the K^{π} =(3⁺) band, energies are from ²⁵⁴No IT decay (265 ms). [‡] Relative branching ratios of 842 γ and 943 γ are from ²⁵⁴No IT decay (265 ms).

γ ⁽²⁵⁴No) (continued)

[#] Branching ratios from ²⁵⁴No IT decay (184 μ s):LBNL. [@] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation

based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

[&] Placement of transition in the level scheme is uncertain.

²⁵⁴₁₀₂No₁₅₂

Adopted Levels, Gammas

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $--- \rightarrow \gamma$ Decay (Uncertain)

 $^{254}_{102}\mathrm{No}_{152}$

Adopted Levels, Gammas

²⁵⁴₁₀₂No₁₅₂