²⁵⁴No IT decay (265 ms) 2010Cl01,2010He10,2006He19

History						
Туре	Author	Citation	Literature Cutoff Date			
Full Evaluation	Balraj Singh	NDS 156, 1 (2019)	31-Jan-2019			

Parent: ²⁵⁴No: E=1296 2; J^{π} =(8⁻); $T_{1/2}$ =265 ms 2; %IT decay=100.0

2010Cl01: ²⁰⁸Pb(⁴⁸Ca,2n γ),E=221 MeV. The ⁴⁸Ca beam obtained from the 88-Inch Cyclotron of LBNL. Target=isotopically enriched ²⁰⁸Pb, two \approx 0.4 μ g/cm² thick foils on a 35 μ g/cm² carbon backing. The evaporated residues were separated using BGS and passed through multiwire proportional counter (MWPC) before being implanted in a 1 mm thick 16 by 16 double-sided silicon strip detector (DSSD) with an active area of 5 by 5 cm. A single, four-fold segmented HPGe Clover detector mounted behind the DSSD was used for γ detection. Measured E γ , I γ , ce, (recoils) γ -coin, (recoils)(ce)-coin, γ (ce)(t), γ (ce)(ce)(t), E α , I α , half-life of isomer.

- 2010He10: ²⁰⁸Pb(⁴⁸Ca,2n γ),E=213.6,218.4 MeV. The ⁴⁸Ca beam obtained from the UNILAC of GSI. Target=isotopically enriched, ²⁰⁸PbS, 450 μ g/cm² thick backed on 40 μ g/cm² Carbon substrate and covered with a 10 μ g/cm² carbon layer. The evaporated residues were separated using SHIP and implanted in Si PIPS detector. The α particles and fission fragments were detected with six Si detectors surrounding the PIPS. The γ -rays were detected using Ge clover detector surrounding the SHIP separator. Measured E γ , I γ , $\gamma\gamma$, γ (ce)-coin, (particle) γ (t), fission and α decay branches. Ph.D. thesis by B. Sulignano, Johannes Gutenberg-University Mainz (2007) also describes the experiment at GSI, and tabulates γ -ray energies emitted by the decay of both the isomers.
- 2006He19 (also 2007Gr17, 2005Gr36, 2010Ju02): E=219 MeV. The fragments were separated from the beam using the gas-filled recoil separator RITU at Jyvaskyla facility. The fragments were implanted in a double-sided position sensitive Si detector DSSD at the GREAT spectrometer. Measured E γ , I γ , $\gamma\gamma$, γ (ce) coin with the GREAT spectrometer consisting of a double-sided position sensitive Si detector, a large segmented planar Ge detector and a large Clover Ge detector. In addition to the ground band up to 24⁺, levels of K^{π} =3⁺ band, and two high-spin isomers discovered. Ph.D. thesis by M. Venhart, Comenius University, Bratislava (2008) also describes the experiment at Jyvaskyla, and tabulates γ -ray energies emitted by the decay of both the isomers.
- 2006Ta19 (also 2010Se10): E=217 MeV. Measured E γ , level lifetimes using Fragment Mass Analyzer to isolate residues of ²⁵⁴No, which were later implanted into a double-sided Si strip detector. The γ rays were detected with three large Clover Ge detectors. Isomers identified through time and spatial correlations of electron signals and implanted ²⁵⁴No nuclides. The isomer decay is expected to populate a rotational band in which most transitions will be highly converted. Comparison of experimental and theoretical 2-quasiparticle level energies. Identification of K^{π} =8⁻, 266 ms and (14⁺), 171 μ s isomers in ²⁵⁴No. The K^{π} =(3⁺) band extended.

2003Bu23 (also 2002Bu28): isomer half-life measured as ≈ 0.3 s from decay curve for conversion electrons. High-K value was proposed for the isomer state, with expected rotational band built on it.

1989La07, 1988Tu07: found no evidence for %SF decay mode.

1973Gh03: in ²⁴⁹Cf(¹²C,2p5n) and ²⁴⁶Cm(¹²C,4n) reactions, observation of 8.10-MeV α of ²⁵⁴No g.s. was interpreted in terms g.s. being fed from an isomeric state of T_{1/2}=0.28 s 4, and decaying predominantly by isomeric transitions, as no evidence was found for its α or SF decay modes, with an upper limit of 20%. Authors suggested that this isomer is probably a high-spin state, and proposed that two-quasiparticle configurations with K^{π} =8⁻, and also other configurations with K^{π} >8.

Theoretical calculations of energies, and proposed 2-qp configurations with high K value for this isomer: 1976Iv04, 1991So15.

²⁵⁴No Levels

E(level) [†]	J ^π ‡	T _{1/2}	Comments
0.0 [#]	0+	51.2 s 4	$T_{1/2}$: from Adopted Levels, where this value is adopted from 2006He19.
44 [#] 1	2^{+}		
146 [#] 1	4+		
304 [#] 1	6+		
518 [#] 1	8+		
987.5 [@] 12	(3^{+})		
1033.7 [@] 13	(4^{+})		
1091.0 [@] 10	(5 ⁺)		
1160.2 [@] 11	(6+)		

 $^{254}_{102} No_{152} \text{--} 2$

²⁵⁴No IT decay (265 ms) 2010Cl01,2010He10,2006He19 (continued)

²⁵⁴No Levels (continued)

E(level) [†]	Jπ‡	T _{1/2}	Comments					
1242.9 [@] 9 1296 2	(7 ⁺) (8 ⁻)	265 ms 2	%SF=0.020 <i>12</i> (2010He10); %α≤0.01 (2010He10) σ (265-ms isomer)/ σ for ²⁵⁴ No channel=0.28 <i>2</i> (2010He10). 1989La07 deduced %SF≤0.19 7 based on T _{1/2} (SF; isomer)≥150 s, deduced from measured T _{1/2} (SF; isomeric state)/T _{1/2} (SF; g.s.)≥0.005, assuming the isomeric ratio in their ²⁰⁸ Net/48 G = 2e) emperature the state of σ (second state)/T _{1/2} (SF; g.s.)≥0.005, assuming the isomeric ratio in their					
			reaction measured by 1973Gh03. No SF decay was detected by 1988Tu07 from ≈0.3–s isomer in ²⁵⁴ No. No evidence was found by 1973Gh03 for α or SF decay modes of this isomer, with an upper limit of 20%.					
			E(level): from average of 1295 keV 2 (2010He10) and 1297 2 (2010Cl01). T _{1/2} : from Adopted Levels.					
			$v7/2[613] \otimes v9/2[734], K^{\pi} = 8^{-}$ configuration proposed by 2010Cl01. 2010He10, 2006Ta19 and 2006He19 proposed $\pi9/2[624] \otimes \pi7/2[514], K^{\pi} = 8^{-}$, However, 2010He10 and 2006He19 suggested that long half-life of this isomer may be due to contribution from 2-neutron configurations of $v7/2[624] \otimes v9/2[734]$ and $v7/2[613] \otimes v9/2[734], K^{\pi} = 8^{-}$.					
[†] From lea	ast-squa	res fit to $E\gamma$	values, assuming 1 keV uncertainty for each γ ray, unless otherwise stated.					

[‡] As proposed in 2010He10 and 2010Cl01, based on band structures. [#] Band(A): K^{π} =0⁺, g.s. band. [@] Band(B): $\pi 1/2[521] \otimes \pi 7/2[514], K^{\pi}$ =(3⁺) band.

 $\gamma(^{254}\text{No})$

Additional information 1.

$\frac{E_{\gamma}!}{I_{\gamma}} = \frac{I_{\gamma}}{I_{\gamma}} = \frac{E_i(\text{level})}{I_i} = \frac{J_i^{\pi}}{I_f} = \frac{I_f}{I_f} = \frac{J_f^{\pi}}{Mult} = \frac{I_{(\gamma+ce)}}{I_{(\gamma+ce)}}$	Comments
x 1296 (8 ⁻) 49 2	I(γ +ce) branching=49% 2, considering that I(γ +ce) branching for 53-keV γ ray is 47% 2 and that for 778 γ is 3.6% 10 (2010He10).
(44)	
$(45) 1033.7 (4^+) 987.5 (3^+)$	$E\gamma = 46$ (2006He19).
	Transition shown by 2010Cl01, but numerical value not given.
53 25.7 <i>19</i> 1296 (8 ⁻) 1242.9 (7 ⁺) (E1) 0.83 5 47 2	$E\gamma = 52$ (2010Cl01).
	 Measured I(γ+ce) branching ratio=45.3 21 (2010He10, text on page 59), with the authors note that the 53-keV transition represents 47% 2 of the decays of the isomer into the K=3 band. From these data, photon branching for 53γ=24.8 <i>19</i>. Branching ratio data are not provided in 2010Cl01, however, the authors estimate reduced hindrance factor f_γ=835 for 53-keV transition, and 183 for 778-keV transition, both assumed as E1, from which 2015Ko14 evaluation deduced relative photon branching ratio of 100 <i>3</i> for 53γ and 23.7 <i>24</i> for 778γ. Mult.: observation of strong γ ray in spectra is consistent with its being E1, and not with M1 or E2 for which the respective theoretical conversion coefficients are 83 and 630.

Continued on next page (footnotes at end of table)

					-			-	
						$\frac{\gamma}{\gamma}$	(^{254}No) (co	ntinued)	
E_{γ}^{\dagger}	I_{γ}	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult.	α^{\ddagger}	$I_{(\gamma+ce)}$	Comments
(58)		1091.0	(5 ⁺)	1033.7	(4 ⁺)				$E\gamma=57$ (2006He19). Transition shown by 2010Cl01, but numerical value not given.
69		1160.2	(6^{+})	1091.0	(5^{+})				$E\gamma = 70$ (2010Cl01), 69 (2006He19).
82		1242.9	(7^+)	1160.2	(6^+)				$E\gamma = 81$ (2006He19).
102		146	4+	44	2+				
103		1091.0	(5^{+})	987.5	(3^{+})				$E\gamma = 104$ (2010Cl01), 103 (2006He19).
126		1160.2	(6^+)	1033.7	(4^+)				Expected line overlaps K-x rays.
									E_{ν} : 126 (2006He19), (128) (2010Cl01).
151		1242.9	(7^{+})	1091.0	(5^{+})				$E_{\gamma}=152$ (2010Cl01), 150 (2006He19).
									$I\gamma(152)/I\gamma(82)=1.10$ 40 (2006Ta19) for questionable γ rays.
159		304	6+	146	4+				
214		518	8+	304	6+				
778	3.6 10	1296	(8 ⁻)	518	8+	[E1]	0.00845	3.6 10	Measured I(γ +ce) or I γ branching ratio=3.6 10 (2010He10). Other: $\approx 4\%$ in thesis by B. Sulignano (Mainz, 2007). I γ (778)/I γ (841)=0.03 2, 0.16 5 (2010He10, uncertainty of 0.50 in 2010He10 is probably a misprint).
786		1091.0	(5^{+})	304	6+				E_{α} : γ from 2010Cl01 only.
841 1		987.5	(3^+)	146	4 ⁺				$E\gamma = 842$ (2010Cl01,2006Ta19); 841 (2006He19).
									$I_{\gamma}(778)/I_{\gamma}(842)=0.03\ 2,\ 0.16\ 50\ (2010\text{He}10).$ $I_{\gamma}(842)/I_{\gamma}(214)=0.31\ 8\ (2005\text{Ee}02).$
856		1160.2	(6+)	304	6+				$E\gamma=857$ (2010Cl01). $I\gamma(856)/I\gamma(159)=0.40$ 15 (2010He10).
887		1033.7	(4^{+})	146	4+				Eγ=888 (2010Cl01,2006Ta19); ; 887 (2006He19).
940		1242.9	(7^{+})	304	6+				E_{γ} : γ from 2010Cl01 only.
943 1		987.5	(3+)	44	2+				$E\gamma = 944$ (2010Cl01,2006Ta19); 943 (2006He19). I γ (943)/I γ (214)=0.86 <i>14</i> (2005Ee02).

²⁵⁴No IT decay (265 ms) 2010Cl01,2010He10,2006He19 (continued)

[†] From 2010He10. Values from 2010Cl01, which are generally higher by 1 keV, are given under comments when different.

^{\ddagger} Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

4

²⁵⁴No IT decay (265 ms) 2010Cl01,2010He10,2006He19

