²⁵⁴No IT decay (184 μs):lbnl 2010Cl01

History									
Туре	Author	Citation	Literature Cutoff Date						
Full Evaluation	Balraj Singh	NDS 156, 1 (2019)	31-Jan-2019						

Parent: ²⁵⁴No: E=2929.7 21; J^{π} =(16⁺); $T_{1/2}$ =184 µs 3; %IT decay=100.0

2010Cl01: ²⁰⁸Pb(⁴⁸Ca,2n\gamma),E=221 MeV. The ⁴⁸Ca beam obtained from the 88-Inch Cyclotron of LBNL. Target=isotopically enriched ²⁰⁸Pb, two $\approx 0.4 \ \mu g/cm^2$ thick foils on a 35 $\ \mu g/cm^2$ carbon backing. The evaporated residues were separated using BGS and passed through multiwire proportional counter (MWPC) before being implanted in a 1 mm thick 16 by 16 double-sided silicon strip detector (DSSD) with an active area of 5 by 5 cm. A single, four-fold segmented HPGe Clover detector mounted behind the DSSD was used for γ detection. Measured E γ , I γ , ce, (recoils) γ -coin, (recoils)(ce)-coin, γ (ce)(t), γ (ce)(ce)(t), E α , I α , half-life of isomer.

²⁵⁴No Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	Comments		
0#	0+	51.2 s 4	T _{1/2} : from Adopted Levels.		
44 [#] 1	2+				
146 [#] 1	4+				
305 [#] 2	6+				
519# 2	8+				
988.0 [@] 13	(3 ⁺)		Configuration= $\pi 1/2[521] \otimes \pi 7/2[514], K^{\pi} = 3^+$.		
1034.0 [@] 17	(4^{+})				
1091.9 [@] 15	(5 ⁺)				
1162.2 ^{<i>@</i>} 16	(6 ⁺)				
1244.5 ^{⁽⁰⁾} 16	(7^{+})				
1296.7 ^{&} 17	(8-)	265 ms <i>3</i>	E(level): 1297 keV 2 (2010Cl01). $T_{1/2}$: from Adopted Levels. 2010Cl01 measured 263 ms 2 from recoil-ce(t). Proposed configurations= $\pi 9/2[624] \otimes \pi 7/2[514]$, $K^{\pi} = 8^{-}$ (2010He10,2006Ta19,2006He19); $v7/2[613] \otimes v9/2[734]$, $K^{\pi} = 8^{-}$ (2010Cl01). However, 2010He10 and 2006He19 suggested that long half-life of this isomer may be due to contribution from 2-neutron configurations of $v7/2[624] \otimes v9/2[734]$ and $v7/2[613] \otimes v9/2[734]$, $K^{\pi} = 8^{-}$.		
1408.1 ^{&} 17	(9 ⁻)				
1531.3 ^{&} 18	(10 ⁻)				
2013.2 ^{<i>a</i>} 18	(10 ⁺)				
2146.6^{a} 18	(11^+) (12^+)				
2448.5^{a} 21	(12) (13^+)				
2617.2 ^{<i>a</i>} 21	(14+)				
2796.4 ^{<i>a</i>} 21	(15^+)	104 0			
2929.1 21	(10')	184 μs 3	E(level): 2928 KeV 3 (2010Cl01). $T_{1/2}$: from Adopted Levels. 2010Cl01 measured 184 μ s 2 from recoil-ce(t) and recoil-ce-ce(t). $\pi 7/2[514] \otimes \pi 9/2[624] \otimes \nu 7/2[613] \otimes \nu 9/2[734]$, $K^{\pi} = 16^+$ configuration is suggested by 2010Cl01.		

 † From least-squares fit to Ey values, assuming 1 keV uncertainty for Ey when not stated.

[‡] From 2010Cl01. Authors suggested that the assignments should be treated as tentative since no experimental data were obtained for determining multipolarities of the transitions.

[#] Band(A): g.s. band, $K^{\pi}=0^+$.

[@] Band(B): $\pi 1/2[521] \otimes \pi 7/2[514], K^{\pi} = 3^+$.

& Band(C): Band based on $K^{\pi} = 8^{-}$ isomer.

^{*a*} Band(D): $v9/2[734] \otimes v11/2[725], K^{\pi} = 10^+$.

			2	²⁵⁴ No IT	decay (184 µs):l	bnl 2010C	Cl01 (continu	ued)	
	γ (²⁵⁴ No)									
Intensity of x rays relative to 100 for 605.2γ (2010Cl01) x-ray Energy (keV) I(x ray)										
$\begin{array}{l} \mathbf{K}\alpha_2 \\ \mathbf{K}\alpha_1 \\ \mathbf{K}\beta_3 + \mathbf{K}\beta_1 \\ \mathbf{K}\beta_2 \end{array}$		14 12 14 14	21.1 3 27.5 3 3 1 48 1			62 4 95 6 36 5 11 3		_		
E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _i (level)	J_i^{π}	\mathbf{E}_{f}	J_f^{π}	Mult.	α ^a	$I_{(\gamma+ce)}$ ‡	Comments	
$(44^{@})$		44	2+	0	0^{+}					
$(45^{@})$		1034.0	(4^+)	988.0	(3^+)					
52		1296.7	(3^{-})	1244.5	(7^+)					
$(58^{@})$		1091.9	(5^+)	1034.0	(4^+)					
70		1162.2	(6^+)	1091.9	(5^+)					
82		1244.5	(7^+)	1162.2	(6+)					
102		146	4+	44	2+					
104		1091.9	(5^{+})	988.0	(3^{+})					
111.4 3	92	1408.1	(9 ⁻)	1296.7	(8 ⁻)	[M1]	9.51 <i>16</i>	95 21	$I(\gamma + ce) = 93 \ 21 \ (2010C101).$	
123 ^{&} 1		1531.3	(10^{-})	1408.1	(9-)				Expected line overlaps K-x rays.	
128 ^{&}		1162.2	(6^{+})	1034.0	(4^{+})				Expected line overlaps K-x rays.	
133.4 ^{b#} 4	24 ^{b# 3}	2146.6	(11^{+})	2013.2	(10^{+})	[M1]	5.66 10	160 17	$I(\gamma + ce) = 158 \ 17 \ (2010Cl01).$	
133.4 ^{b#} 4	24 ^{b#} 3	2929.7	(16^{+})	2796.4	(15^+)	[M1]	5.66.10	160 17		
145 1	20.6	2291.6	(12^+)	2146.6	(11^+)	[M1]	4.45 11	109 32	$I(\gamma + ce) = 104 \ 32 \ (2010Cl01).$	
152		1244.5	(7^+)	1091.9	(5^+)					
156.9 <i>3</i>	61	2448.5	(13^{+})	2291.6	(12^{+})	[M1]	15.23 23	97 <i>17</i>	$I(\gamma + ce) = 99 \ 17 \ (2010Cl01).$	
159		305	6+	146	4+					
168.9 <i>3</i>	61	2617.2	(14^{+})	2448.5	(13^{+})	[M1]	12.39 19	80 14	$I(\gamma + ce) = 85 \ 14 \ (2010Cl01).$	
179.4 3	8 1	2796.4	(15^{+})	2617.2	(14^{+})	[M1]	10.45 16	92 13	$I(\gamma + ce) = 90 \ 13 \ (2010C101).$	
214	7.2	519	$\frac{8}{(16^+)}$	305	(14^{+})	[[2]	0.219.5	0.2.26	I(a + a a) = 0.2 (2010C101)	
312.4 4	52	2929.7	(10) (14^+)	2017.2	(14) (12^+)	[E2]	0.318 5	9.2.20	$I(\gamma + ce) = 9.2$ (2010C101). $I(\gamma + ce) = 7.2$ (2010C101).	
347 5 5	82	2796.4	(1+) (15+)	2448 5	(12^{+})	[E2]	0.229 4	9825	$I(\gamma + cc) = 9.2$ (2010C101). $I(\gamma + cc) = 9.2$ (2010C101)	
481.8.5	72	2013.2	(10^+)	1531.3	(10^{-})	[E1]	0.0199.3	7 2	$I(\gamma + cc) = 7.2$ (2010Cl01). $I(\gamma + cc) = 7.2$ (2010Cl01).	
605.2 4	100 8	2013.2	(10^+)	1408.1	(9 ⁻)	[E1]	0.0131 2	101 8	$I(\gamma + ce) = 100 \ 8 \ (2010Cl01).$	
778		1296.7	(8 ⁻)	519	8+					
786		1091.9	(5 ⁺)	305	6+					
842		988.0	(3 ⁺)	146	4+					
857		1162.2	(6+)	305	6+					
888		1034.0	(4 ⁺)	146	4+					
940		1244.5	(7^+)	305	6^+					
944		988.0	(3^{+})	44	2+					

[†] From 2010Cl01. [‡] Deduced by evaluator. Values from 2010Cl01 are given under comments.

[#] Doublet, but the intensity is not divided. Seven 133γ - 133γ coincidences were observed.

[@] Not seen experimentally, due to large conversion coefficient.

[&] Not seen experimentally since it overlaps with No K x rays.

^a Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

^b Multiply placed with undivided intensity.

²⁵⁴No IT decay (184 μs):lbnl 2010Cl01

²⁵⁴₁₀₂No₁₅₂

²⁵⁴No IT decay (184 μ s):lbnl 2010Cl01

²⁵⁴₁₀₂No₁₅₂