Adopted Levels

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Balraj Singh	NDS 156, 1 (2019)	31-Jan-2019

 $Q(\beta^{-}) = -3330 SY; S(n) = 6780 SY; S(p) = 1780 SY; Q(\alpha) = 8816 12$ 2017Wa10 Estimated uncertainties (2017Wa10): 410 for $Q(\beta^{-})$, 360 for S(n), 300 for S(p).

Estimated uncertainties (2017 ward). 410 for Q(p), 500 for S(I), 500 for S(I)

S(2n)=15010 380, S(2p)=5220 330, Q(\varepsilon p)=1410 300 (syst, 2017Wa10).

2018It04 deduced mass excess(254 Lr)=89713 keV 141 using Q(α) from 2017Wa10, where mass excess=89871 keV 301 from systematics.

1981Mu06: ²⁵⁴Lr identified as daughter of ²⁵⁸Db and grand-daughter of ²⁶²Bh, which were produced in ²⁰⁹Bi(⁵⁴Cr,n), E=4.85 MeV/nucleon; and ²⁰⁹Bi(⁵⁰Ti,n), E=4.75 MeV/nucleon reactions at GSI, measured half-life. Later measurements were made at the same laboratory and reported in 1985He22, 1989Mu09 and 2008An16.

1984Og03: ²⁵⁴Lr produced and identified in ²⁰⁸Pb(⁴⁸Ti,pn) reaction, and assignment made through α decay chain, as grandparent of ²⁴⁶Cf through the 6750 α .

Theoretical studies: consult the NSR database at www.nndc.bnl.gov for 23 references dealing with theoretical calculations of half-lives for different decay modes, binding energies, fission characteristics, and other nuclear structure aspects.

Additional information 1.

²⁵⁴Lr Levels

The deduced HF values for the observed α transitions are larger than 25, indicating that none of these α transitions are favored, therefore, the data indicate that the main configurations of these excited states are not identical to that of ²⁵⁸Db g.s.

в

Cross Reference (XREF) Flags

A 258 Db α decay (4.3 s)

²⁵⁸Db α decay (1.9 s)

E(level)	T _{1/2}	XREF	Comments	
0	18.1 s <i>18</i>	A	%α=71.7 19; %ε+%β ⁺ =28.3 19 (2008An16); %SF<0.1 (2000Ho27) %ε+β ⁺ decay mode was determined from a total number of 158 α particles from the decay of ²⁵⁴ No produced in ε decay of ²⁵⁴ Lr, and a total number of 445 α particles from the α decay of ²⁵⁴ Lr. Others: %α=76 11, %ε+%β ⁺ =24 11 (1985He22, same group as 2008An16, note that value of %ε+%β ⁺ =22 6 was modified to account for 90% α decay for ²⁵⁴ No); %α=60 +11-15, %ε+%β ⁺ =40 +15-11 (2006Fo02); %α=94 (1984Og03). Upper limit for SF decay mode: see details in 2000Ho27 evaluation. T _{1/2} : from α-decay curves. Weighted average of 18.4 s 18 (2008An16 at GSI) and 17.8 s +19-16 (2008Ga25 at LBNL). Other less precise measurements with fewer number of correlated events: 22 s +9-6 (2006Fo02, from the same group as 2008Ga25); 13.4 s 42 (2001Ga20 at HIRFL-Lanzhou); 10.0 s +45-24 (1989Mu09); 13 s +3-2 (1985He22), 1986He28); 10 s +7-5 (1081Mr06), 1080Mr00, 1082He22, and 1081Mr06 from form form form form form form form	
0+x?		В	 (1981Mu06). 1989Mu09, 1986He28, 1985He22 and 1981Mu06 are from GSI, the same research group as 2008An16. Decay modes from 2008An16. %α=?; %ε+%β⁺=? From the decays of two α-activities in ²⁵⁸Db, 2009He20 assumed two long-lived activities in ²⁵⁴Lr, but two separate half-lives for ²⁵⁴Lr could not be determined. 	
74 50		Α		
190 50		Α		
222 50		Α		
248 50		Α		
268 50		Α		
344 50		A		