²⁵⁴Es β⁻ decay (39.3 h) 1973Ah04,1962Un01,1971Po20

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Balraj Singh	NDS 156, 1 (2019)	31-Jan-2019

Parent: ²⁵⁴Es: E=84.2 25; $J^{\pi}=2^+$; $T_{1/2}=39.3$ h 2; $Q(\beta^-)=1088$ 3; $\%\beta^-$ decay=98 2

²⁵⁴Es-J^{π},T_{1/2}: From ²⁵⁴Es Adopted Levels.

²⁵⁴Es-Q(β^{-}): From 2017Wa10.

 254 Es- $\%\beta^{-}$ decay: $\%\beta^{-}=98$ 2.

1973Ah04: mass-separated sources of 254m Es, measured E α , I α , E γ , I γ , x-ray energies and intensities, $\alpha\gamma$ -, α (ce)-, and α (L x ray)-coin using Argonne magnetic α -spectrometer and Au-Si surface-barrier detectors for α detection, and Ge(Li) detectors for γ and x rays. This paper is mainly about the level scheme for 250 Bk from α decay of 39.3-hour 254 Es.

1962Un01: measured $E\beta^-$, ce, $E\gamma$, $I\gamma$, x rays, $(\beta^-)\gamma$ -coin, $\gamma\gamma$ -coin using double-lens beta-ray spectrometer for β^- and conversion electrons and NaI(TI) detector for γ rays.

1971Po20: precise atomic-electron binding energies in fermium were deduced from precise measured energies of 40-, 45-, and 104-keV transitions in ce data. Also 1975FrZZ (priv. comm. from one of the authors of 1971Po20) provided additional details of internal conversion data. This communication mentioned a forthcoming paper on the decay of 39.3-h decay of ²⁵⁴Es, but no paper seems to have appeared according to the search of the NSR database.

1963Ho07: measurement of transition energies from ce data.

²⁵⁴Fm Levels

E(level) [†]	J π ‡	T _{1/2} ‡
0.0#	0+	3.240 h 2
44.992 [#] 10	2^{+}	
149.349 [#] 16	4+	
693.66 [@] 4	2^{+}	
733.54 [@] 4	3+	

[†] From least-squares fit to $E\gamma$ data.

[‡] From Adopted Levels.

Band(A): Ground-state band.

^(a) Band(B): $K^{\pi} = 2^+ \gamma$ -vibrational band.

β^- radiations

E(decay)	E(level)	Ιβ ^{-‡}	Log ft	Comments
(439 4)	733.54	16 [†] 4	7.3 1	av E β =125.1 <i>13</i>
(479 4)	693.66	56 [†] 4	6.9 1	av E β =137.7 <i>13</i> I β ⁻ : Ib-:
				E(decay): 4/5 5 measured by 1962Un01 (Kurle plot), which may contain contribution from β transition with $E\beta$ (end-point)=440 feeding the 734 level. From β spectra, measured $I\beta(475\beta)/I\beta(1127\beta)=3.0.5$ (1962Un01).
1127 2	44.992	25.0 36	8.5 1	av E β =361.1 15 E(decay): measured by 1962Un01 (Kurie plot). The shape of the β spectrum showed that any contribution from a L=2 component was insignificant. Contribution from second-forbidden β branch to the 0 ⁺ g.s. is assumed negligible. I β^- : deduced by evaluator from 98 2-(transition intensity of 693 γ)- (summed transition intensity of γ rays feeding the 45 level), assuming no β feeding to the g.s. that involves 2 ⁺ to 0 ⁺ β transition.

²⁵⁴Es β⁻ decay (39.3 h) 1973Ah04,1962Un01,1971Po20 (continued)

β^{-} radiations (continued)

[†] Note that the quoted feeding does not include transition intensity of the 39.8-keV transition. This transition is expected to be weak as mentioned in priv. comm. 1975FrZZ.

[‡] Absolute intensity per 100 decays.

 $\gamma(^{254}\text{Fm})$

I γ normalization: The γ intensities are per 100 decays of ²⁵⁴Es.

ω

A γ with E γ =989 7, I γ =0.7 and Ice(K)=0.011 4 was reported by 1962Un01, but no such γ reported by 1973Ah04.

The measured total intensity of I(K x ray)=1.72 *10* (1973Ah04) is in good agreement with the total I(K x ray)=1.63 7, deduced by evaluator from I γ and α (K) data.

	Energie E(x-ray	s and int	ensi I(2	ties of x-ray)	Fm 2	к-ray) (Fm x-:	 1973Ah04) ray		
	115.280 121.065 135.18 4	15 15	0.	515 777	-	$K\alpha_2$ $K\alpha_1$ $K\beta_3$			
	136.55 4 140.49 4 141.72 5	! ! ;	(0.33 4 0.110 1	5	$\begin{array}{c} K\beta_3 + I \\ K\beta_1 \\ K\beta_2 + K\beta_2 \\ K\beta_2 + I \end{array}$	κβ ₁ 4 Κβ ₄ +0		
I(x-ray) Other meas I(L x-rays Note that expected :	values ar surements s):I(K x- the meas from the	re per 100 : rays):I(6 sured L/K decay sch	deca $(49\gamma)=$ and l and l and l	ays of = =90 <i>15</i> L/(I(649	39-h :6 9γ)	²⁵⁴ Es 1:100 disagre	(1962Und e with thos	01). Se	
E_{γ}^{\dagger}	$I_{\gamma}^{\ddagger@}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult.#	α ^{&}	$I_{(\gamma+ce)}^{(a)}$	Comments
39.881 10		733.54	3+	693.66	2+	(E2)	2.10×10 ³		 α(L)=1507 22; α(M)=434 6; α(N)=123 2; α(O)=31.1 5; α(P)=4.84 7; α(Q)=0.01054 15 E_γ: deduced from precise ce data for 688.5 and 648.7 γ rays, and 584.2 and 544.3 γ rays (1971Po20). Mult.,δ: E2(+M1) with δ>1.75 suggested by 1975FrZZ from measured L2/L3 and M2/M3 values, but the numerical values of these subshell ratios were not listed in the communication. Also in an e-mail communication of April 4, 2017, I. Ahmad (ANL), first author of 1973Ah04 and a collaborator of author of 1975FrZZ, suggested that δ(E2/M1) cannot be deduced since values for M1 multipolarity are very small. Evaluator assigns this transition mainly as E2 based on estimate by 1975FrZZ. Conversion electron intensity of the 39.8-keV transition is not available but expected to be weak as mentioned in 1975FrZZ priv. comm.
44.992 10	0.062 4	44.992	2+	0.0	0^+	E2	1172	72.3 43	α (L)=841 <i>12</i> ; α (M)=242 <i>4</i> α (N)=68.8 <i>10</i> ; α (O)=17.33 <i>25</i> ; α (P)=2.71 <i>4</i> ; α (Q)=0.00630 <i>9</i>

				254 Es β	⁸⁻ decay (39.	3 h)	1973Ah04,196	2Un01,1971Po20 (continued)
						$\frac{\gamma}{\gamma}$	(²⁵⁴ Fm) (contin	ued)
E_{γ}^{\dagger}	Ι _γ ‡@	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. [#]	δ	α ^{&}	Comments
			_	<u>*</u>				 E_γ: weighted average of 45.000 <i>15</i> (1973Ah04) and 44.988 <i>10</i> (1971Po20, deduced from precise ce data for 693.7 and 648.7 gamma rays). Mult.: α(L)exp>200 (1962Un01). I_(γ+ce): deduced by evaluator from summed transition intensity of γ rays feeding the 45 level + I(β) to 45 level. I_γ: deduced by evaluator from Iγ+ce(45γ) and total conversion coefficient for 45γ. Other: measured value of 0.049 <i>5</i> in 1973Ah04 seems to have been underestimated, possibly due to detection efficiency issues for
104.356 <i>12</i>	0.180 17	149.349	4+	44.992 2+	E2		21.7	low-energy γ rays. $\alpha(L)=15.60\ 22;\ \alpha(M)=4.49\ 7$ $\alpha(N)=1.277\ 18;\ \alpha(O)=0.323\ 5;\ \alpha(P)=0.0515\ 8;\ \alpha(Q)=0.000203\ 3$ I _{γ} : other: 0.20 2 (1975FrZZ). E _{γ} : weighted average of 104.350 15 (1973Ah04) and 104.360 12 (1971Po20, deduced from precise ce data for 648.7 and 544.3 γ rays, and 688.5 and 584.2 γ rays). Mult.: $\alpha(exp)=20\ 5$ (1962Un01); L1/L2=0.066 2 (1975FrZZ,1971Po20).
544.28 10	0.90 8	693.66	2+	149.349 4+	E2		0.0612	Ice(L):Ice(M+N+O)=3.0 4:1.0 2 (1962Un01). $\alpha(K)=0.0335 5; \alpha(L)=0.0202 3; \alpha(M)=0.00547 8$ $\alpha(N)=0.001542 22; \alpha(O)=0.000397 6; \alpha(P)=7.02\times10^{-5} 10;$ $\alpha(Q)=1.776\times10^{-6} 25$ I _y : other: 0.98 7 (1975FrZZ). Mult.: $\alpha(K)$ exp=0.00256 40 (1975FrZZ), 0.03 1 (1962Un01). Ix $\alpha(K)$ (1975FrZZ).
584.18 <i>10</i>	2.9 2	733.54	3+	149.349 4+	E2(+M1)	>9	0.0538 17	α(K)=0.027 s (19620101). α(K)=0.038 9; α(L)=0.0177 15; α(M)=0.0047 4 α(N)=0.00133 10; α(O)=0.00034 3; α(P)=6.2×10-5 6; α(Q)=1.9×10-6 4 $ E_{γ}: 583.26 40 (1963H007) from ce data. $ $ I_{γ}: other: 3.2 2 (1975FrZZ). $ Mult.,δ: from α(K)exp=0.0296 15, K/L1=4.43 22, L1/L2=0.86 5 (1975FrZZ). Others: α(K)exp=0.042 5 (1962Un01), using ce intensity from 1962Un01 and Iγ from 1973Ah04, evaluator also obtains $ α(K)exp=0.042 5. $ Iag(K)=0.122 42 (1062Un01).
648.69 7	29 2	693.66	2+	44.992 2+	E2(+M1)	>9	0.0427 <i>13</i>	ice(K)=0.125 <i>I</i> ⁵ (19620001). α (K)=0.0262 <i>I</i> 0; α (L)=0.0121 2; α (M)=0.00321 4 α (N)=0.00090 2; α (O)=0.000234 3; α (P)=4.20×10 ⁻⁵ 7; α (Q)=1.27×10 ⁻⁶ 4 E _γ : 648.12 40 (1963Ho07) from ce data. I _γ : other: 31.6 22 (1975FrZZ). Mult.,δ: from α (K)exp=0.0255 7, K/L1=4.91 <i>I</i> 5, L1/L2=0.97 3, L1/L3=5.32 25 (1975FrZZ). Others: α (K)exp=0.023 3 (1962Un01). Using ce intensities from 1962Un01 and I _γ from 1973Ah04, evaluator obtains α (K)exp=0.0269 20, α (L)exp=0.0128 <i>I</i> 4 and α (M+)exp=0.0045 <i>I</i> 5. δ: deduced by the evaluator from ce data in 1975FrZZ. Ice(K):Ice(L):Ice(M+N+O)=0.78 2:0.37 3:0.13 4 (1962Un01).
688.52 7	12.5 9	733.54	3+	44.992 2+	E2(+M1)	>8	0.0378 13	$\alpha(K)=0.0239 \ 11; \ \alpha(L)=0.0102 \ 2; \ \alpha(M)=0.00270 \ 5$

4

I

					²⁵⁴ Es β ⁻ decay (39.3 h) 1973Ah04,1962Un01,1971Po20 (continued)			
							$\gamma(^{254}\text{Fm})$ (continued)	
E_{γ}^{\dagger}	$I_{\gamma}^{\ddagger @}$	E _i (level)	\mathbf{J}_i^{π}	$E_f J_f^{\pi}$	Mult. [#]	α &	Comments	
693.67 7	24.8 17	693.66	2+	0.0 0+	E2	0.0359	 α(N)=0.000760 12; α(O)=0.000196 4; α(P)=3.55×10⁻⁵ 7; α(Q)=1.13×10⁻⁶ 6 E_γ: 688.20 40 (1963Ho07) from ce data. I_γ: other: 13.6 10 (1975FrZZ). Ice(K)=0.27 5, Ice(L)=0.14 4 deduced by the evaluator, see comment for 693.67γ. Mult.,δ: from α(K)exp=0.0240 7, K/L1=5.17 15, L1/L2=1.03 3 (1975FrZZ). Other: α(K)exp=0.022 4, α(L)exp=0.011 3 and K/L=1.9 6 (deduced by evaluator from ce data given above). α(K)=0.0225 4; α(L)=0.00981 14; α(M)=0.00260 4 α(N)=0.000731 11; α(O)=0.000189 3; α(P)=3.41×10⁻⁵ 5; α(Q)=1.074×10⁻⁶ 15 E_γ: 693.05 40 (1963Ho07) from ce data. I_γ: other: 27.0 19 (1975FrZZ). Mult.: from K/L1=4.90 15, L1/L2=1.03 3, L1/L3=6.06 25 (1975FrZZ). Other: α(K)exp=0.021 3 (1962Un01). Ice(K):Ice(L):Ice(M+N+O)=0.83 3:0.38 4:0.15 4 (1962Un01) for 694+689 doublet. Evaluator deduces Ice(K)=0.56 4 and Ice(L)=0.243 17 for 693.67γ using its Iγ value from 1973Ah04, α(K)(theory)=0.0225 4, and α(L)(theory)=0.00981 14 from BrIcc; the remaining Ice(K)=0.27 5 Ice(L)=0.14 4 is assigned to the 688.5γ from 734 level. 	

[†] Measurements by 1973Ah04. Others: 1962Un01, 1963Ho07. [‡] Per 100 β^- decays, obtained by 1973Ah04 from α -count rate of ²⁵⁴Fm which was in equilibrium with 39-h ²⁵⁴Es. [#] Multipolarities are from ce data of 1962Un01. The electron intensities from 1962Un01 listed here are per 100 β decays (these were measured relative to the total β spectrum). Other measurement: 1963Ho07. ^(@) Absolute intensity per 100 decays. [&] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies,

S

assigned multipolarities, and mixing ratios, unless otherwise specified.

254 Es β^- decay (39.3 h) 1973Ah04,1962Un01,1971Po20

Decay Scheme

254 Es β^- decay (39.3 h) 1973Ah04,1962Un01,1971Po20

 $^{254}_{100}\mathrm{Fm}_{154}$