Adopted Levels, Gammas | History | | | | | | | | |-----------------|--------------|-------------------|------------------------|--|--|--|--| | Type | Author | Citation | Literature Cutoff Date | | | | | | Full Evaluation | Balraj Singh | NDS 156, 1 (2019) | 31-Jan-2019 | | | | | $Q(\beta^-)=-2550 SY; S(n)=6514 4; S(p)=5396.7 23; Q(\alpha)=7307.5 19$ 2017Wa10 Estimated $\Delta Q(\beta^-)=100 (2017Wa10)$. S(2n)=12055 6, S(2p)=9710 3 (2017Wa10). Both the known activities of 254 Md decay almost 100% by β^+ , ε decays, but no experimental data are available to elucidate the level structure in 254 Fm. Based on particle plus rotor model phenomenological calculations, 20178007 analyzed $\beta^++\varepsilon$ decays of the 10-min and 28-min activities of 254 Md to 254 Fm, and concluded that 10-min activity, assigned as $\pi 1/2[521] \otimes v 1/2[620]$, $K^{\pi}=0^-$, $J^{\pi}=1^-$ is the ground state, and the 28-min activity, assigned as $\pi 7/2[514] \otimes v 1/2[620]$, $K^{\pi}=3^-$, is a $J^{\pi}=3^-$ isomer lying within a few keV of the 10-min ground state. The authors further estimated decays to the excited states in 254 Fm, and surmised that the 10-min, 1^- ground state would populate the known g.s. and the first 2^+ state in 254 Fm, and the 28-min 3^- isomer would feed the known 2^+ and 3^+ members of the gamma-vibrational band at 694 and 793, respectively. Theoretical studies: consult the NSR database at www.nndc.bnl.gov for 172 references dealing with theoretical calculations of half-lives for different decay modes, binding energies, fission characteristics, and other nuclear structure aspects. Additional information 1. # ²⁵⁴Fm Levels #### Cross Reference (XREF) Flags A 254 Es β^- decay (275.7 d) B 254 Es β^- decay (39.3 h) | E(level) | $J^{\pi \dagger}$ | $T_{1/2}$ | XREF | Comments | | | |--------------------------------|-------------------|-----------|------|--|--|--| | 0.0‡ | 0+ | 3.240 h 2 | В | %α=99.9408 3; %SF=0.0592 3
%α/%SF=1689 8, weighted average of 1695 8 and 1664 17, measured by 1967Fi03.
Other measurements: 1956Jo09.
T _{1/2} : measurement by 1967Fi03. Earlier measurements: 3.24 h 1 (1956Jo09), 3.2 h (1954Ch23). | | | | 44.992 [‡] <i>10</i> | 2+ | | В | J^{π} : 44.99 γ , E2 to 0^{+} . | | | | 149.349 [‡] <i>16</i> | 4+ | | В | J^{π} : 104.35 γ , E2 to 2 ⁺ . | | | | 693.66 [#] 4 | 2+ | | В | J^{π} : 693.67 γ , E2 to 0 ⁺ g.s. | | | | 733.54 [#] 4 | 3+ | | В | J^{π} : 584.18 γ and 688.68 γ , E2(+M1) to 4 ⁺ and 2 ⁺ , respectively; β feeding from 2 ⁺ parent rules out 4 ⁺ , and 2 ⁺ is less likely from absence of γ to 0 ⁺ ; gamma-vibrational band member. | | | [†] From band assignments, and other supporting comments as given. # $\gamma(^{254}{\rm Fm})$ | $E_i(level)$ | \mathbf{J}_i^{π} | E_{γ}^{\dagger} | I_{γ}^{\dagger} | $\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$ | Mult. [†] | δ^{\dagger} | $lpha^{\ddagger}$ | |--------------|----------------------|------------------------|------------------------|--|--------------------|--------------------|-------------------| | 44.992 | 2+ | 44.992 10 | 100 | $0.0 0^{+}$ | E2 | | 1172 | | 149.349 | 4+ | 104.356 12 | 100 | 44.992 2+ | E2 | | 21.7 | | 693.66 | 2+ | 544.28 10 | 3.1 3 | 149.349 4+ | E2 | | 0.0612 | | | | 648.69 <i>7</i> | 100 7 | 44.992 2+ | E2(+M1) | >9 | 0.0427 13 | [‡] Band(A): Ground-state band. [#] Band(B): $K^{\pi}=2^{+} \gamma$ -vibrational band. ## Adopted Levels, Gammas (continued) # γ (254Fm) (continued) | $E_i(level)$ | \mathbf{J}_i^{π} | E_{γ}^{\dagger} | I_{γ}^{\dagger} | $E_f J_f^{\pi}$ | Mult. [†] | δ^{\dagger} | α^{\ddagger} | |--------------|----------------------|------------------------|------------------------|------------------|--------------------|--------------------|---------------------| | 693.66 | 2+ | 693.67 7 | 86 6 | $0.0 0^{+}$ | E2 | | 0.0359 | | 733.54 | 3 ⁺ | 39.881 <i>10</i> | | 693.66 2+ | (E2) | | 2.10×10^3 | | | | 584.18 <i>10</i> | 23.2 16 | 149.349 4+ | E2(+M1) | >9 | 0.0538 17 | | | | 688.68 2 | 100 7 | 44.992 2+ | E2(+M1) | >8 | 0.0378 13 | $^{^{\}dagger}$ From 39.3-h 254 Es β^- decay. ## **Adopted Levels, Gammas** ## Level Scheme Intensities: Relative photon branching from each level $^{^{\}ddagger}$ Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified. ## **Adopted Levels, Gammas** $$^{254}_{100}\mathrm{Fm}_{154}$$