²⁵⁸Md α decay (51.50 d) 1993Mo18

History					
Туре	Author	Citation	Literature Cutoff Date		
Full Evaluation	Balraj Singh	NDS 156, 1 (2019)	31-Jan-2019		

Parent: ²⁵⁸Md: E=0.0; J^{π} =(8⁻); T_{1/2}=51.50 d 29; Q(α)=7271.3 19; % α decay=100.0

 258 Md-J^{π},T_{1/2}: From 258 Md Adopted Levels in the ENSDF database (August 2017 update). Proposed

configuration= $\pi 7/2[514] + \nu 9/2[615], K^{\pi} = 8^{-}.$

²⁵⁸Md-Q(α): From 2017Wa10.

 $^{258}\text{Md-}\%\alpha$ decay: $\%\alpha{=}100$ for $^{258}\text{Md}\ \alpha$ decay.

1993Mo18: measured $E\alpha$, $I\alpha$, $E\gamma$, $I\gamma$, $\alpha\gamma$ -coin.

2007Sa02: theoretical structure analysis based on particle plus rotor model and Gallagher-Moszkowski rules, assigned J^{π} and bands.

²⁵⁴Es Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	Comments			
0.0#	(7^{+})	275.7 d 5	$T_{1/2}$: from Adopted Levels.			
80.1 [#] 1	(8 ⁺)		J^{π} : large lower limit for HF is consistent with 8 ⁺ member of g.s. rotational band, however, other possibilities are not excluded.			
171.1 [#] 1	(9 ⁺)		J^{π} : large lower limit for HF is consistent with 9 ⁺ member of g.s. rotational band. Note that there is a large non-physical negative transition intensity balance at the 171-keV level.			
214.7? 2			J^{π} : 6 ⁻ bandhead (1993Mo18) with configuration= $\pi 3/2[521] \otimes v 9/2[615]$, but 2007Sa02 analysis did not support this assignment, as the calculated energy for the bandhead for this configuration is above 350 keV.			
289.9? 3	(7^{+})		J^{π} : 1993Mo18 suggested 7 ⁻ member of $K^{\pi}=6^{-}$ band.			
376.8 1	(8+)		The gamma decay of this level is not fully known. J^{π} : 8 ⁻ member of 6 ⁻ band (1993Mo18), but 8 ⁺ in the theoretical analysis by 2007Sa02 with configuration= $\pi 7/2[633] \otimes y/2[615]$.			
403.8 <i>3</i>	(7 ⁻)		The gamma decay of this level is largely unknown. J^{π} : (7 ⁻ ,8 ⁻) (1993Mo18); 7 ⁻ in the theoretical analysis by 2007Sa02 with configuration= $\pi 7/2[514] \otimes v7/2[613]$.			
447.9 <i>1</i>	(8-)					
469.2 2			J^{π} : 9 ⁻ member of 6 ⁻ band (1993Mo18).			

[†] From least-squares fit to $E\gamma$ values.

[‡] From Adopted Levels. Assignments proposed by 1993Mo18 are given under comments. Also assignments proposed in the theoretical analysis by 2007Sa02 are considered.

[#] Band(A): $K^{\pi} = (7^+)$ band. Configuration= $\pi 7/2[633] \otimes \nu 7/2[613]$ (1993Mo18).

α radiations

$E\alpha^{\dagger}$	E(level)	$\mathrm{I}\alpha^{\dagger @}$	HF [#]	Comments	
6697 2	469.2	3.4 14	32 14	Relative I <i>α</i> =0.052 21 (1993Mo18).	
6718 2	447.9	65.8 <i>13</i>	2.1 <i>I</i>	Relative $I\alpha = 1.000 \ 19 \ (1993Mo18)$.	
6763 4	403.8	20.8 12	10.2 7	Relative I <i>α</i> =0.316 <i>18</i> (1993Mo18).	
6788 2	376.8	9.9 10	28 <i>3</i>	Relative I α =0.151 <i>15</i> (1993Mo18).	
6990 ^{&} 2	171.1	≤0.20 [‡]	$\geq 1.0 \times 10^4$	Relative I α <0.003 (1993Mo18).	
7080 ^{&} 2	80.1	≤0.20 [‡]	$\geq 2.5 \times 10^4$	Relative $I\alpha = 0.003$ (1993Mo18).	
7159 <mark>&</mark> 2	0.0	≤0.20 [‡]	$\geq 5.3 \times 10^4$	Relative I α <0.003 (1993Mo18).	

[†] From 1993Mo18. I α values have been normalized here such that summed I α =100, excluding those for E α ≥6800 where only upper limits were given. Other measurements: 1980Ho04, 1970Fi12, 1968Hu06. Possible additional α groups: 6800-6980 keV,

²⁵⁸Md α decay (51.50 d) 1993Mo18 (continued)

α radiations (continued)

 $I\alpha \le 5.4$; 7000-7040 keV, $I\alpha \le 1.0$; 7090-7140 keV, $I\alpha \le 0.20$. The relative intensities listed in 1993Mo18 are ≤ 0.082 , ≤ 0.015 and ≤ 0.003 , respectively.

[‡] Since contributions from conversion-electron summing could not be estimated for these α groups, only upper limits were given by 1993Mo18.

 $\# r_0(^{254}\text{Es})=1.49 \ I$ is used in deducing hindrance factors.

[@] Absolute intensity per 100 decays.

& Existence of this branch is questionable.

$\gamma(^{254}\text{Es})$

Iy normalization: From summed transition intensity from 448 level normalized to I α =65.8% 13.

The decay scheme given here is basically that proposed by 1993Mo18, based on levels populated by α transitions and γ data. Exceptions are for J^{π} assignments, which in some cases are different from those in 1993Mo18. Evaluator considers the decay scheme as incomplete, since information about multipolarities and mixing ratios is generally missing. There is also a serious problem with a non-physical negative transition intensity balance at the 171-keV level.

Einsteinium x-ray energies and intensities (1993Mol							1993Mo18))	
	E(x-	ray) r	elativ	I(x-r e to Iγ	ay) ⁄(367.	8γ)=100			
112.4 2 117.9 2 133.4 4 136.8 3		2.2 3 3.6 4 1.3 3 0.7 3				$\begin{matrix} \mathtt{K}\alpha_2\\ \mathtt{K}\alpha_1\\ \mathtt{K}\beta_1\\ \mathtt{K}\beta_2 \end{matrix}$	x-ray x-ray x-ray x-ray	+Kβ ₃ x-ray	
E_{γ}^{\dagger}	$I_{\gamma}^{\dagger @}$	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	J_f^{π}	Mult.	δ	α &	Comments
^x 56.7 2 71.1 <i>I</i>	0.54 <i>13</i> 8.0 <i>5</i>	447.9	(8-)	376.8	(8+)	(E1)		0.366	α (L)=0.273 4; α (M)=0.0686 10 α (N)=0.0189 3; α (O)=0.00469 7; α (P)=0.000742 11; α (Q)=2.15×10 ⁻⁵ 3 Mult.: from intensity balance considerations at 447.9 and 376.8 levels, mult=E1 is more consistent than either M1 or E2
80.1 2	2.43 23	80.1	(8 ⁺)	0.0	(7 ⁺)	(M1+E2)	1.25 25	49 6	$\alpha(L)=35$ 4; $\alpha(M)=9.9$ 12; $\alpha(N)=2.8$ 4; $\alpha(O)=0.70$ 9; $\alpha(P)=0.115$ 13; $\alpha(Q)=0.00127$ 25 Mult. δ : deduced by evaluator from transition intensity balance at 80.1 level
86.9 ^{<i>a</i>} 2	0.56 15	376.8	(8+)	289.9?	(7+)	(M1+E2)		30 17	$\alpha(\exp)=31$ 16 $\alpha(L)=22$ 12; $\alpha(M)=6$ 4; $\alpha(N)=1.7$ 10; $\alpha(O)=0.44$ 25 $\alpha(P)=0.07$ 4; $\alpha(Q)=0.0013$ 9 Mult.: from $\alpha(\exp)$, deduced by evaluator from intensity balance at 376.8 level.
91.0 <i>3</i>	0.30 18	171.1	(9+)	80.1	(8+)	[M1+E2]		25 13	$\alpha(L)=18.2 \ 89; \ \alpha(M)=5.0 \ 28$ $\alpha(N)=1.42 \ 78; \ \alpha(O)=0.36 \ 19; \ \alpha(P)=0.060$ $28: \ \alpha(O)=0.00109 \ 79$
171.1 2	1.14 <i>37</i>	171.1	(9+)	0.0	(7+)	[E2]		2.30	$\alpha(K)=0.1482\ 21;\ \alpha(L)=1.546\ 23;\ \alpha(M)=0.441\ 7$

389.1 2

447.9 1

4.09

36.6 38

1993Mo18 (continued)

 258 Md α decay (51.50 d)

$\gamma(^{254}\text{Es})$ (continued) $I_{\gamma}^{\dagger @}$ α**&** E_{γ}^{\dagger} E_i(level) J_i^{π} J_f^{π} Mult. Comments \mathbf{E}_{f} α (N)=0.1246 19; α (O)=0.0313 5; α (P)=0.00509 8; $\alpha(Q) = 3.22 \times 10^{-5} 5$ 189.1^{#a} 2 Mult.: [M1+E2] implied by J^{π} assignments in 0.99 39 403.8 [D,E2] 3.5 34 214.7? (7^{-}) 1993Mo18. Placement of this transition based on energy sum of 189.1+214.7 gammas, also supported by nearly balance intensities of the two transitions in a cascade, however the ordering of the two transitions is not established. 205.7 2 1.21 43 376.8 (8^{+}) 171.1 (9^{+}) [M1+E2] 3.2 22 $\alpha(K)=2.2\ 21;\ \alpha(L)=0.80\ 10;\ \alpha(M)=0.210\ 12$ $\alpha(N)=0.059$ 3; $\alpha(O)=0.0151$ 10; $\alpha(P)=0.0027$ 4; α(Q)=0.00010 8 Mult.: [E1] implied by J^{π} assignments in 1993Mo18. 214.7^{#a} 2 1.16 46 214.7? 0.0 (7^{+}) [D,E2] 2.5 24 Mult.: [E1] implied by J^{π} assignments in 1993Mo18. See comment for 189.1 γ about placement of this transition. 276.8 1 20.2 19 447.9 (8^{-}) 171.1 (9^+) (E1)[‡] 0.0556 $\alpha(K)=0.0430$ 6; $\alpha(L)=0.00941$ 14; $\alpha(M) = 0.00231 4$ *α*(N)=0.000639 *9*; *α*(O)=0.0001642 *23*; $\alpha(P)=2.97\times10^{-5}$ 5; $\alpha(Q)=1.293\times10^{-6}$ 19 296.7 2 5.4 9 376.8 (8^+) 80.1 (8^+) [M1+E2] 1.19 $\alpha(K)=0.8$ 7; $\alpha(L)=0.24$ 9; $\alpha(M)=0.052$ 18 α (N)=0.017 5; α (O)=0.0044 13; α (P)=0.008 3; $\alpha(Q) = 4 \times 10^{-5} 3$ Mult.: [E1] implied by J^{π} assignments in 1993Mo18. 298.1 3 1.89 56 171.1 (9^+) [D,E2] 0.98 93 Mult.: [E1] implied by J^{π} assignments in 469.2 1993Mo18. (8⁺) (E1)[‡] 367.8 1 100.0 69 447.9 (8^{-}) 80.1 0.0308 $\alpha(K)=0.0241$ 4; $\alpha(L)=0.00501$ 7; α(M)=0.001227 18 α (N)=0.000339 5; α (O)=8.74×10⁻⁵ 13; $\alpha(P)=1.605\times10^{-5}$ 23; $\alpha(Q)=7.47\times10^{-7}$ 11 $\alpha(K)=0.42$ 35; $\alpha(L)=0.11$ 5; $\alpha(M)=0.029$ 12 376.8 376.8 4 1.72 67 (8^+) 0.0 (7^{+}) [M1+E2] 0.6 5 α(N)=0.008 4; α(O)=0.0021 9; α(P)=0.00039 18; $\alpha(Q)=1.8\times10^{-5}$ 15 Mult.: [E1] implied by J^{π} assignments in 1993Mo18.

[†] From 1993Mo18. Gammas were observed in coincidence with α .

[‡] From 1993Mo18, based on weakness of the observed intensity of K x-rays.

 (8^{-})

80.1

 $0.0 \quad (7^+)$

 (8^+)

[D,E2]

(E1)[‡]

0.47 44

0.0209

Mult.: [E1] implied by J^{π} assignments in

 $\alpha(K)=0.01645\ 23;\ \alpha(L)=0.00331\ 5;$

 α (N)=0.000223 4; α (O)=5.77×10⁻⁵ 8; α (P)=1.069×10⁻⁵ 15; α (Q)=5.18×10⁻⁷ 8

1993Mo18.

 $\alpha(M) = 0.000808 \ 12$

[#] The ordering of the 189.1-214.7 γ cascade is not established.

469.2

447.9

[@] For absolute intensity per 100 decays, multiply by 0.381 21.

& Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

$^{258}\mathrm{Md}\,\alpha$ decay (51.50 d) 1993Mo18 (continued)

$\gamma(^{254}\text{Es})$ (continued)

^{*a*} Placement of transition in the level scheme is uncertain. ^{*x*} γ ray not placed in level scheme.

²⁵⁸Md α decay (51.50 d) 1993Mo18

²⁵⁴₉₉Es₁₅₅

5

²⁵⁸Md α decay (51.50 d) 1993Mo18

 $^{254}_{99}\mathrm{Es}_{155}$