Adopted Levels

History							
Туре	Author	Citation	Literature Cutoff Date				
Full Evaluation	Balraj Singh	NDS 156, 1 (2019)	31-Jan-2019				

 $Q(\beta^{-})=-649 \ 12$; $S(n)=6031 \ 12$; $S(p)=6880 \ SY$; $Q(\alpha)=5927 \ 5 \ 2017Wa10$

Estimated uncertainty=360 for S(p) (2017Wa10).

S(2n)=10836 11, S(2p)=12290 300 (syst) (2017Wa10).

1955Ha35: ²⁵⁴Cf produced and identified as daughter of 39.3-h ²⁵⁴Es decaying by ε mode, measured half-life of ²⁵⁴Cf decay. 1955Be99, 1956Fi11, 1957Hu70, 1963Ph01, 1965Me02: half-life measurements, and $\%\alpha$ decay mode by 1968Be21. Additional information 1.

Theoretical studies: consult the NSR database at www.nndc.bnl.gov for 86 references dealing with theoretical calculations of half-lives for different decay modes, binding energies, fission characteristics, and other nuclear structure aspects.

²⁵⁴Cf Levels

Cross Reference (XREF) Flags

A 254 Es ε decay (39.3 h)

E(level)	J^{π}	T _{1/2}	XREF	Comments	
0	$0 0^+ 60.5 ext{ d } 2 ext{ A}$		A	%SF=99.69 2; %α=0.31 2 (1968Be21)	
				$\%\alpha$: from the α and fission counts, the branching ratio was determined by 1968Be21 as α /fission=0.00310 <i>16</i> . Earlier measurement: $\%\alpha\approx0.2$, $\%$ SF \approx 99.8 (F. Asaro, I. Perlman- quoted by 1978LeZA).	
				$T_{1/2}$: measured by 1963Ph01. This value was also recommended by 1965Me02. The partial SF half-life of 60.9 d 9 was recommended by 2000Ho27; the SF branching of 99.69% 2 yields $T_{1/2}$ =60.7 d 9. Other half-life measurements: 61.9 d 11 (1965Me02), 60.3 d 11 (1957Hu70, revised by 1965Me02), 56.2 d (1956Fi11, reanalyzed by 1957Hu70), 60 d 10 (1955Be99), 85 d 15 (1955Ha35).	
(50 <i>SY</i>)	[2+]		A	XREF: A(?). E(level),J ^{π} : level not seen experimentally. Energy and J ^{π} here is from systematics of known 2 ⁺ g.s. band members in A=244-252 Cf isotopes.	