²⁵³Fm ε decay 1967Ah02 History Type Author Citation Literature Cutoff Date Full Evaluation E. Browne, J. K. Tuli NDS 114, 1041 (2013) 1-Mar-2012 Parent: 253 Fm: E=0.0; J^{π} =(1/2)+; $T_{1/2}$ =3.00 d *12*; $Q(\varepsilon)$ =336 3; % ε decay=88 *1* 1967Ah02: 252 Cf(α ,3n) 253 Fm: E=40 MeV, ion chem. Measured α , γ , ce, K x ray(Es), $\alpha\gamma$. $T_{1/2}$ and $Q(\beta^-)$ require that ε decay goes to a level with J=1/2 or 3/2. From Nilsson model, one expects configuration=3/2[521] and 1/2[521]. No direct decay to $7/2^+$ g.s. is expected (third forbidden log ft>12.8). Looked for (ce)(K x ray) prompt coincidences; only prompt ce line (with E>50) observed was the ce(K) of 272γ of 249 Cf (α decay daughter) (1967Ah02). An M2 transition of this energy would be expected to have $T_{1/2}>1$ μ s. K x ray(Es)/272 γ (²⁴⁹Cf)=17.3 10 (1967Ah02), which gives K x ray(Es)=0.51 9 per ²⁵³Fm ε decay (if I(272 γ)=0.22 per ²⁵³Fm α decay (A=249 Nuclear Data Sheets, 1999Ar21)). From the proposed decay scheme I(K x ray)=0.374 18 from K-shell electron capture. ²⁵³Es Levels $\frac{\text{E(level)}}{0.0} \quad \frac{\text{J}^{\pi}}{7/2^{+}} \quad \frac{\text{T}_{1/2}}{20.47 \text{ d } 3} \quad \frac{\text{Comments}}{\text{S,T}_{1/2}: \text{ From Adopted Levels.}}$