²⁵⁶Db α decay 2001He35,2008Ne01

History

Туре	Author	Citation	Literature Cutoff Date	
Full Evaluation	A. M. Mattera, S. Zhu, A. B. Hayes, E. A. Mccutchan	NDS 172, 543 (2021)	1-Jan-2021	

Parent: ²⁵⁶Db: E=0.0; T_{1/2}=1.6 s +5-3; Q(α)=9340 30; % α decay=70 11

²⁵⁶Db-Q(α): from 2017Wa10.

 256 Db-T_{1/2}: from 2017Si08 based on value from 2001He35.

²⁵⁶Db-% α decay: from 2017Si08, weighted average taken by 2008Ne01 of their result (which is not stated in the paper but presumably 76 % 11), and % α =64 12 by 2001He35 (implied from measured % ε =36 12).

2001He35: Source of ²⁵⁶Db produced in ²⁰⁹Bi(⁵⁰Ti,3n) at 4.59-5.08 MeV/A, evaporation residues implanted in 16 strips Si detector following filtering by SHIP separator. Measured E α , T_{1/2}(α), $\alpha\alpha$ and α SF parent-daughter correlations. A total of 16 α -decay chains were observed, of which only 8 were used to estimate the decay energy.

2008Ne01: Production of ²⁶⁰Bh in ²⁰⁹Bi(⁵²Cr,n) at 202.4 MeV (center-of-mass energy of the beam in the center of the target). ²⁵⁶Db was produced in α decay of ²⁶⁰Bh. Evaporation residues implanted on a Si-strip detector array, after passing through a MWPC used for discrimination of implantation events from alpha-like decay events. Measured E α , T_{1/2}(α). A total of 6 α -decay chains were observed.

²⁵²Lr Levels

E(level) [†]	T _{1/2}	Comments
0.0	0.33 s +8-7	$\% \varepsilon + \% \beta^+ = 60$ calc; $\% \alpha = 40$ calc; $\% SF < 2$ calc $T_{1/2}$: weighted average of 0.27 s +18 -8 (2008Ne01) and 0.36 s +11 -7 (2001He35). $\% \alpha, \% \varepsilon + \% \beta^+, \% SF$: not measured for this nucleus. The probability for spontaneous fission of ²⁵² Lr was studied by 1976Og02 through ^{203,205} Tl(⁵⁰ Ti,xn) reactions, and an upper limit of 2% was estimated for its spontaneous fission decay. The theoretical calculations of 2019Mo01 give $T_{1/2} \frac{1}{2}(\alpha) = 5.50$ s and the partial half-life for Gamow-Teller β decay $T_{1/2} \frac{1}{2}(\beta^+) = 1.98$ s, hence $\% \alpha$ $\approx 40, \% \varepsilon + \% \beta^+ \approx 60, \% SF < 2.$
120? 40		
180 <i>30</i>		
310? 40		

[†] From Q(α) differences; Δ E(level) added quadratically.

α radiations

Εα	E(level)	$I\alpha^{\ddagger\#}$	HF [†]	Comments
8891 20	310?	≈11	≈16	$E\alpha$: α only reported in 2001He35. The uncertainty represents the FWHM of the detectors resolution determined during the calibration procedure.
9019 <i>16</i>	180	≈67	≈6.4	The value was taken as the weighted average of $E(\alpha) = 9030 \text{ keV } 28 \text{ (from 2008Ne01, as})$ the average of 4 α chains at 9030 keV 55, 9020 keV 55, 9040 keV 55, 9030 keV 55) and $E(\alpha) = 9014 \text{ keV } 20 (reported in 2001He35 as the average of 5 \alpha events).$
9073 19	120?	≈11	≈58	The value was taken as the weighted average of $E(\alpha) = 9000 \text{ keV } 55 \text{ from } 2008\text{NeO1}$ and $E(\alpha) = 9075 \text{ keV } 20$ reported in 2001He35. In both cases, the uncertainties represent the FWHM of the detectors resolution determined during the calibration procedure.
9190 <i>55</i>	0.0	≈11	≈128	For consinstency with AME16, the value was taken from 2008Ne01, assuming that the transition $E(\alpha) = 9190 \text{ keV } 55$ goes to the g.s The transition $E(\alpha) = 9120 \text{ keV } 20$ reported in 2001He35 is also thought to populate the g.s In both cases, the uncertainties represent the FWHM of the detectors resolution determined during the calibration procedure.

[†] $r_0(^{252}Lr)=1.49$ 3 calculated as average of the r_0 for the doubly-even neighboring nuclei. The other r_0 's were estimated by the evaluator based on existing scarce data, hence the large uncertainties on $r_0(^{252}Lr)$ and hindrance factors.

[‡] From 2001He35.

[#] For absolute intensity per 100 decays, multiply by 0.70 11.