²⁵⁶Md α decay 2000Ah02

History

Type Author Citation Literature Cutoff Date
Full Evaluation A. M. Mattera, S. Zhu, A. B. Hayes, E. A. Mccutchan NDS 172, 543 (2021)

1-Jan-2021

Parent: 256 Md: E=0.0; J^{π} =(1⁻); $T_{1/2}$ =77.5 min 16; $Q(\alpha)$ =7737 SY; % α decay=9.5 5

2000Ah02: 256 Md was produced in reactions of 253 Es(α ,2n) at the Argonne 152-cm cyclotron, and was removed from the target by a helium jet system and chemically isolated. α , γ and α - γ were measured with Si and Ge(Li) detectors. Five α decays were observed and their energies were measured with samples covering small solid angle to the Si detector for minimizing α -electron summing, and with calibration standards from 1991Ry01. Total 4 γ rays with E γ =99.4 keV, 122.8 keV, 378.5 keV and 408.5 keV were observed in coincidence with the 7206-keV α . One γ ray with E γ =445 keV I was in coincidence with the 7142-keV α . These γ rays were not placed in the level scheme of 252 Es because of the complexity of levels in an odd-odd nucleus.

Other: 2019Ah04, 1993Mo18, 1971Ho16, 1970Ri12.

The 5 α branches are adopted from 2000Ah02 based on the following considerations. The peak shape of high energy and weak α rays in the spectrum is clearly visible. No peaks with intensity larger than 1% are visible. In 1993Mo18, the determination of the high energy α rays was not a unique solution because of poor detector resolution and conversion-electron summing incurred by the large detector solid angle (\approx 30% of 4π). In 1971Ho16, the peaks in the region beyond 7.3 MeV are statistically less certain. In 1970Fi12, the statistics in the high energy region are also poor to make a definite assignment of every peak.

²⁵²Es Levels

E(level) [†]	$J^{\pi \ddagger}$	Comments
0.0	(5^{-})	
35 11		
436 9		
476 8	(1-)	J^{π} : Favored α from ²⁵⁶ Md g.s, which was suggested to be J=1 ⁻ , K=0 with configuration $\pi 7/2^-[514] \otimes v 7/2^+[613]$ (1993Mo18).
542 9		

[†] Calculated from E α 's by assuming that the 7676-keV α feeds the ²⁵²Es g.s based on the fact that it is not in coincidence with any of the observed γ rays and having the highest energy of all of the observed α transitions.

α radiations

$E\alpha^{\dagger}$	E(level)	$I\alpha^{\dagger \#}$	HF [‡]	Comments
7142 5	542	22 1	4.1 4	
7207 2	476	71 2	2.33 16	$E\alpha$: From 2019Ah04.
7247 5	436	2.5 5	96 <i>21</i>	
7642 8	35	2.1 5	$3.8 \times 10^3 10$	
7676 8	0.0	2.5 5	$4.31 \times 10^3 91$	

[†] From 2000Ah02 unless otherwise noted. Other measurements: 1993Mo18, 1971Ho16 and 1970Fi12. 1993Mo18 with Eα calibration standards of 1973Ry07: 7155 5 (21% 2); 7221 3 (47% 3); 7455 6 (4.5% 5); 7532 10 (2.5% 5); 7611 10 (1.5% 5); 7678 6 (4.0% 4); 7773 16 (0.5% 3), and an unresolved group of α between 7221 and 7455 (19% 2). 1971Ho16 with Eα(253 Es)=6.640 MeV and Eα(256 Fm)=6.925 MeV as calibration energies: 7.160 MeV 15 (16% 2); 7.23 MeV 1 (63% 4); 7.33 MeV 3 (4% 1); 7.46 MeV 3 (5% 1); 7.49 MeV 2 (6% 1); 7.67 MeV 3 (2% 1) and 7.72 MeV 2 (4% 1). 1970Fi12 with Eα(253 Es)=6.632 MeV and Eα(256 Fm)=6.911 MeV as calibration energies: 7.136 MeV 5 (21% 3); 7.202 MeV 5 (69% 5); 7.44 MeV 1 (≈2%); 7.58 MeV 1 (≈2%); 7.64 MeV 1 (≈4%) and 7.67 MeV 1 (≈2%).

²⁵⁶Md-T_{1/2}: weighted average of 78.1 min 18 (1993Mo18), 77 min 5 (1971Ho16), and 75 min 4 (1970Fi12).

 $^{^{256}}$ Md-%α decay: weighted average of 8.5% 8 (1970Fi12), 9.9% 5 (1971Ho16) and 11% 3 (1993Mo18).

²⁵⁶Md-Q: From 2017Wa10. Deduced Q(α)=7798 8 assuming the 7676-keV α decays to the ²⁵²Es g.s.

[‡] From the Adopted Levels. Support derived from this dataset is given in the comments.

$^{256}{ m Md}~lpha~{ m decay}$ 2000Ah02 (continued)

α radiations (continued)

 ‡ r₀(252 Es)=1.488 7, unweighted average of r₀(250 Cf)=1.4887 8, r₀(252 Cf)=1.499 4 and r₀(252 Fm)=1.4762 19. # For absolute intensity per 100 decays, multiply by 0.095 5.

$$\gamma(^{252}\text{Es})$$

Es K x-rays measured by 2000Ah02: $K\alpha_1 = 118.0 \text{ keV}$, $K\alpha_2 = 112.5 \text{ keV}$, $K\beta_1' = 132.5 \text{ keV}$, $K\beta_2' = 137.0 \text{ keV}$.

E_{γ}^{\dagger}	$E_i(level)$
^x 99.4	
^x 122.8	
^x 378.5	
^x 408.5	

^x445 1

[†] Assigned to ²⁵²Es based on them in coincidence with 7207 α , except 445 γ which is in coincidence with 7142 α (2000Ah02).

 $^{^{}x}$ γ ray not placed in level scheme.