Adopted Levels:inferred

History

Туре	Author	Citation	Literature Cutoff Date	
Full Evaluation	A. M. Mattera, S. Zhu, A. B. Hayes, E. A. Mccutchan	NDS 172, 543 (2021)	1-Jan-2021	

 $Q(\beta^{-})=520 SY; S(n)=5660 SY 2017Wa10$

 $\Delta Q(\beta^{-}) = 360 \ (2017 \text{Wa10}).$

S(2n)=10080 (syst) 300 (2017Wa10).

1960Di03: ²⁵²Cm produced as the great-great granddaughter to ²⁵²U produced through successive neutron captures on ²³⁸U in the first large scale thermonuclear test explosion (Ivy Mike) on November 1, 1952 in the Pacific Ocean. Neutrons were produced through deuterium-tritium fusion (En=14 MeV) and also from the fission of uranium. Airborne debris was collected on filter paper and larger samples collected from condensed debris from an adjacent atoll. Elements 94 to 100 were chemically extracted and purified. Pu, Am, and Cm fractions were measured with 12-inch 60° mass spectrometers. The abundances of the transcurium isotopes were determined from measuring α or β activities combined with known half-lives. The production of ²⁵²Cm was inferred from the detection of ²⁵²Cf (T_{1/2}=2.647 y) assuming the following decay ²⁵²U -> ²⁵²Np -> ²⁵²Pu -> ²⁵²Am -> ²⁵²Cm -> ²⁵²Cf.

1966Rg01: Analysis of debris from fused rock following Par and Barbel low-yield thermonuclear explosions. Prompt mass spectrometric measurements to search for 252 Cm; deduced upper limit for $T_{1/2}$.

Related articles: 1956Fi11, 1967Ho20, and 1969In01.

²⁵²Cm Levels

E(level)	\mathbf{J}^{π}	T _{1/2}	Comments
0.0?	0^+	<2 d	$\%\beta^{-}=100$
			E(level): indirectly deduced from the detection of 252 Cf (T _{1/2} =2.647 y) in the debris of a thermonuclear test (1960Di03, 1966Rg01).

 $\%\beta^-$: expected to be the dominant decay mode of ²⁵²Cm, considering the theoretical half-life for α decay is $10^{13.6}$ s (2019Mo01).

 $T_{1/2}$: estimated by 1966Rg01 from absence of ²⁵²Cm in the debris of two thermonuclear tests analyzed in mass spectrometric measurements.

Theoretical β decay $T_{1/2} > 100$ s (2019Mo01).