²⁵²Es ε decay **1973Fi06**

	History		
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	A. M. Mattera, S. Zhu, A. B. Hayes, E. A. Mccutchan	NDS 172, 543 (2021)	1-Jan-2021

Parent: ²⁵²Es: E=0.0; J^{π}=(5⁻); T_{1/2}=471.7 d *19*; Q(ϵ)=1.26×10³ 5; % ϵ +% β ⁺ decay=22 2

1973Fi06: ²⁵²Es was produced in reactions of ²⁵²Cf(d,2n) or ²⁴⁹Bk(α ,n) at the Argonne 152-cm cyclotron, and was chemically separated from the targets and other reaction products. Detectors: Ge(Li) with Be window, Si(Li) and NaI(TI); Measured T_{1/2}, E_{α},

 I_{α} , E_{γ} , I_{γ} , I_{ce} , $\gamma\gamma$, γce , α/EC ratio.

x-ray energies (1973Fi06): $E(K\alpha_2)=109.82 \text{ keV } 5$; $E(K\alpha_1)=115.02 \text{ keV } 5$; $E(K\beta_3)=128.58 \text{ keV } 10$; $E(K\beta_1)=129.82 \text{ keV } 10$; $E(K\beta_2+K\beta_4)=133.60 \text{ keV } 10$; $E(KO_2+KO_3)=134.76 \text{ keV } 10$.

x-ray intensities per 100 ε decays (1973Fi06): I(K α_2)=13.4 10; I(K α_1)=20.5 14; I(K $\beta_{1,3}$)=8.4 7; I(K $\beta_{2,4}$ +KO_{2,3})=2.9 3. α : Additional information 1.

²⁵²Cf Levels

Jπ‡	$T_{1/2}^{\ddagger}$
0^{+}	
2+	92 ps 6
4+	
(2^{+})	
(2^{-})	
(3^{+})	
(3 ⁻)	
(4^{+})	
(4 ⁻)	
(3^{+})	
	$ \begin{array}{c} J^{\pi \ddagger} \\ 0^{+} \\ 2^{+} \\ 4^{+} \\ (2^{-}) \\ (3^{+}) \\ (3^{-}) \\ (4^{+}) \\ (4^{-}) \\ (3^{+}) \end{array} $

[†] From a least-squares fit to $E\gamma$, by evaluators.

[‡] From the Adopted Levels.

ε, β^+ radiations

1973Fi06 assign 100% ε feeding to the 969.8 level. An intensity balance indicates small feeding to the (3⁺), 845.7-keV level, (4⁺), 900.3-keV level and (4⁻), 917.0-keV level, and is adopted here.

E(decay)	E(level)	$\mathrm{I}\varepsilon^{\dagger}$	Log ft	$\mathrm{I}(\varepsilon + \beta^+)^{\dagger}$	Comments
(2.9×10 ² 5)	969.83	20 3	8.3 ¹ <i>u</i> 4	20 3	ε K=0.22 <i>12</i> ; ε L=0.53 <i>7</i> ; ε M+=0.25 <i>5</i> E(decay): in 1973Fi06, the ε decay energy to the 969.8-keV level was deduced to be 320 keV <i>30</i> based on ε (K)/ ε =0.45 <i>10</i> . From the recommended value of Q(ε)=1260 keV <i>50</i> by 2017Wa10, the ε decay energy to this level is 290 keV <i>50</i> .
$\begin{array}{c} (3.4 \times 10^2 \ 5) \\ (3.6 \times 10^2 \ 5) \\ (4.1 \times 10^2 \ 5) \end{array}$	917.03 900.29 845.72	0.16 2 0.095 <i>17</i> 1.64 <i>21</i>	11.25 <i>21</i> 11.54 <i>21</i> 10.1 ¹ <i>u 3</i>	0.16 2 0.095 <i>17</i> 1.64 <i>21</i>	ε K=0.59 6; ε L=0.30 4; ε M+=0.118 18 ε K=0.60 5; ε L=0.29 3; ε M+=0.114 15 ε K=0.43 7; ε L=0.40 5; ε M+=0.174 25

[†] Absolute intensity per 100 decays.

					²⁵² Es ε decay 1973Fi06 (continue		1973Fi06 (continue	d)
γ (²⁵² Cf)								
${\rm E_{\gamma}}^{\#}$	$I_{\gamma}^{\dagger \# @}$	E _i (level)	\mathbf{J}_i^{π}	E_f	${ m J}_f^\pi$	Mult. [‡]	α	Comments
45.72 5	0.10 1	45.72	2+	0.0	0+	E2	9.2×10 ² 5	α (L)=661 34; α (M)=188 10; α (N)=52.9 27; α (O)=13.1 7; α (P)=2.05 10; α (Q)=0.00469 21 Mult.: from α (M)exp=240, α (N+O+)=70 with uncertainties better than 15% (1072)=00
102.33 5	7.2 5	969.83	(3+)	867.51	(3 ⁻)	[E1]	0.1394 20	$\alpha(L)=0.1042 \ 15; \ \alpha(M)=0.0260 \ 4; \ \alpha(N)=0.00711 \ 10; \ \alpha(O)=0.001772 \ 25; \ \alpha(P)=0.000296 \ 4 \ \alpha(O)=1.003\times10^{-5} \ 14$
106.02 5	0.53 5	151.73	4+	45.72	2+	E2	16.97 25	$\alpha(L)=12.22 \ 18; \ \alpha(M)=3.49 \ 5; \ \alpha(N)=0.981$ $14; \ \alpha(O)=0.243 \ 4; \ \alpha(P)=0.0389 \ 6$ $\alpha(Q)=0.0001510 \ 22$ Mult.: from $\alpha(L2)\exp=7.2, \ \alpha(L3)\exp=3.8$ with uncertainties better than 15% (1973Fi06).
139.03 5	53 4	969.83	(3 ⁺)	830.81	(2 ⁻)	E1	0.2502 35	$\alpha(K)=0.1862\ 26;\ \alpha(L)=0.0479\ 7;$ $\alpha(M)=0.01186\ 17;\ \alpha(N)=0.00326\ 5;$ $\alpha(O)=0.000817\ 12$ $\alpha(P)=0.0001406\ 20;\ \alpha(Q)=5.25\times10^{-6}\ 7$ Mult.: from $\alpha(L1+L2)\exp=0.03$ with
165.0 <i>1</i>	0.55 6	969.83	(3+)	804.82	(2+)	M1	9.89	uncertainty better than 15% (1973F106). $\alpha(K)=7.70; \alpha(L)=1.634; \alpha(M)=0.404; \alpha(N+)=0.156$ Mult.,δ: M1 with δ=0.0 23 from $\alpha(L1+L2)\exp=2.2$ with uncertainty better than 15% (1973Fi06).
694.0 <i>1</i> 715.8 <i>1</i>	1.76 <i>12</i> 3.30 <i>23</i>	845.72 867.51	(3 ⁺) (3 ⁻)	151.73 151.73	4+ 4+	[E1]	0.00847 19	$\alpha(K)=0.00678 \ 15; \ \alpha(L)=0.001265 \ 30;$ $\alpha(M)=0.000306 \ 7; \ \alpha(N)=8.42\times10^{-5} \ 20;$ $\alpha(O)=2.17\times10^{-5} \ 5$ $\alpha(P)=4.08\times10^{-6} \ 9; \ \alpha(O)=2.20\times10^{-7} \ 5$
748.6 <i>3</i>	0.29 5	900.29	(4+)	151.73	4+	[E2]	0.0273 7	$\begin{array}{l} \alpha(\mathbf{K}) = 0.01814; \ \alpha(\mathbf{L}) = 0.0067321; \\ \alpha(\mathbf{M}) = 0.001766; \ \alpha(\mathbf{N}) = 0.00048915; \\ \alpha(\mathbf{O}) = 0.0001244 \end{array}$
759.1 <i>1</i>	1.96 <i>14</i>	804.82	(2+)	45.72	2+	[E2]	0.0265 7	$\begin{array}{l} \alpha(\mathbf{r}) = 2.20 \times 10^{-7}, \ \alpha(\mathbf{Q}) = 8.07 \times 10^{-2} 20 \\ \alpha(\mathbf{K}) = 0.0177 \ 4; \ \alpha(\mathbf{L}) = 0.00648 \ 20; \\ \alpha(\mathbf{M}) = 0.00169 \ 5; \ \alpha(\mathbf{N}) = 0.000470 \ 15; \\ \alpha(\mathbf{O}) = 0.000120 \ 4 \end{array}$
765.3 1	0.70 6	917.03	(4 ⁻)	151.73	4+	[E1]	0.00752 17	$\begin{array}{l} \alpha(P)=2.1/\times10^{-5} \ ; \ \alpha(Q)=7.86\times10^{-7} \ 19 \\ \alpha(K)=0.00604 \ 14; \ \alpha(L)=0.001118 \ 26; \\ \alpha(M)=0.000270 \ 6; \ \alpha(N)=7.43\times10^{-5} \ 17; \\ \alpha(O)=1.91\times10^{-5} \ 4 \end{array}$
785.1 <i>1</i>	70 4	830.81	(2 ⁻)	45.72	2+	[E1]	0.00719 16	$\alpha(P)=3.61\times10^{-6} \ 8; \ \alpha(Q)=1.97\times10^{-7} \ 4 \\ \alpha(K)=0.00577 \ 13; \ \alpha(L)=0.001066 \ 25; \\ \alpha(M)=0.000257 \ 6; \ \alpha(N)=7.08\times10^{-5} \ 17; \\ \alpha(O)=1.82\times10^{-5} \ 4 \\ \alpha(P)=3.45\times10^{-6} \ 8; \ \alpha(Q)=1.88\times10^{-7} \ 4 $
800.0 <i>1</i> 804.8 <i>1</i>	5.7 <i>4</i> 1.5 <i>1</i>	845.72 804.82	(3 ⁺) (2 ⁺)	45.72 0.0	2 ⁺ 0 ⁺	[E2]	0.0236 6	$\alpha(K)=0.01606\ 35;\ \alpha(L)=0.00555\ 17;$ $\alpha(M)=0.00144\ 4;\ \alpha(N)=0.000400\ 12$ $\alpha(O)=0.0001020\ 31;\ \alpha(P)=1.86\times10^{-5}\ 6;$ $\alpha(O)=7.01\times10^{-7}\ 17$
818.1 <i>1</i>	2.85 22	969.83	(3 ⁺)	151.73	4+			

Continued on next page (footnotes at end of table)

				25	5^{2} Es ε dece	ay 1973Fi0	6 (continued)
γ ⁽²⁵² Cf) (continued)							
$E_{\gamma}^{\#}$	Ι _γ †#@	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult. [‡]	α	Comments
821.8 <i>I</i>	1.33 10	867.51	(3 ⁻)	45.72 2+	[E1]	0.00664 15	$\alpha(K)=0.00534 \ 12; \ \alpha(L)=0.000981 \ 23; \alpha(M)=0.000237 \ 6; \ \alpha(N)=6.51\times10^{-5} \ 15; \alpha(O)=1.68\times10^{-5} \ 4 \alpha(P)=3.18\times10^{-6} \ 7; \ \alpha(O)=1.75\times10^{-7} \ 4$
854.5 4	0.13 3	900.29	(4+)	45.72 2+	[E2]	0.0209 5	$\alpha(K) = 0.01452 \ 32; \ \alpha(L) = 0.00475 \ 14; \ \alpha(M) = 0.00122 4; \ \alpha(N) = 0.000341 \ 10; \ \alpha(O) = 8.69 \times 10^{-5} \ 26 \alpha(P) = 1.59 \times 10^{-5} \ 5; \ \alpha(Q) = 6.24 \times 10^{-7} \ 15$
924.1 <i>1</i>	9.2 6	969.83	(3^{+})	45.72 2+			

[†] Photon intensities per 100 ε decays, obtained in 1973Fi06 by normalizing the total γ -ray and conversion electron intensities of the high energy transitions populating the ground-state band to 100% with the ce cofficients from 1968Ha53 assuming no direct ε branch to the g.s. band is expected.

[‡] From the Adopted Gammas unless otherwise noted.

From 1973Fi06.
@ For absolute intensity per 100 decays, multiply by 0.22 2.

3

²⁵²Es ε decay 1973Fi06

 $^{252}_{\ 98} Cf_{154}$

4