Adopted Levels, Gammas

				History					
Туре				Author	Citation	Literature Cutoff Date			
Full	Evaluatio	on A. M. N	Iattera, S.	Zhu, A. B. Hayes, E. A. Mccutchan	NDS 172, 543 (2021)	1-Jan-2021			
$Q(\beta^-) = -1.26 \times$ S(2n) = 11278.4 α : Additional in	10 ³ 5; S(27; S(2p nformatic	n)=6172 4; S b)=11533 10 bn 1.	(p)=6482 (2017Wa1	a 11; $Q(\alpha)$ =6216.95 4 2017Wa10 0).					
				²⁵² Cf Levels					
				Cross Reference (XREF) F	lags				
				A 256 Fm α decay B 252 Es ε decay C Coulomb excitation D Cf(18 O,X γ)					
E(level) [†]	\mathbf{J}^{π}	T _{1/2}	XREF		Comments				
0.0 [‡]	0+	2.647 y 3	ABCD	$%\alpha$ =96.898 <i>3</i> ; %SF=3.102 <i>3</i> T _{1/2} : 2.647 y <i>3</i> adopted from 1994KhZW on the analysis of the following measured half-lives: 2.646 y <i>4</i> (1965Me02), 2.621 y <i>6</i> (1969De23), 2.659 y <i>10</i> (1973Mi05), 2.638 y 7 (1974Sp02), 2.637 y <i>5</i> (1976Mo30), 2.640 y 7 (1982La25), 2.651 y <i>4</i> (1984SmZV), 2.648 y 2 (W.G. Alberts and M. Matzke, PTB Mitteilungen 93, 315 (1983)), and 2.6503 y <i>31</i> (1985Ax02). This analysis took into account the duration and the number of measurements in each experiment by comparing them with a formulated ideal experiment. Other measured half-lives: 2.55 y <i>15</i> (1957Ea01); 2.628 y <i>10</i> (1974Sh15); 2.653 y <i>1</i> (quoted in 1992Ra08 as private communication J.R. Smith). Other evaluated half-lives: 2.645 y <i>8</i> (1986LoZT: an average of 2.638 y and 2.651 y with a quoted error sufficiently large to cover the range of uncertainty); 2.648 y <i>2</i> (1992Ra08: Rajeval method); 2.650 y <i>2</i> (1994Ka08: Modified Bayesian Method). % α and %SF from weighted average of deduced %SF values from α /SF=31.56 <i>35</i> (1993Pa29), 31.5 <i>3</i> (1970Al23), 31.3 <i>5</i> (1970Al23), 31.3 <i>2</i> (1965Me02), 31 <i>1</i> (1954Ma98) and measured %SF value of 3.1028 <i>27</i> (2018Be29). Other <i>α</i> /SF measurements: T _w (SE)=66 x <i>10</i> (1957Ea01) α (SE=36 <i>4</i> (1961Se18))					
45.72 [‡] 5	2+	92 ps 6	ABCD	B(E2) \uparrow =16.7 <i>11</i> (1971Fo17) T _{1/2} : calculated from B(E2) \uparrow =16.7 e ² b ² <i>11</i> in Coulomb excitation with $\alpha(45.72\gamma)$ =917.					
151.73 [‡] 6	4+		ΒD	J^{π} : E2 γ to 2 ⁺ .					
316.23 [‡] <i>12</i>	6+		D J^{π} : E2 γ to 4 ⁺ .						
536.6 [‡] 3	8+		$\mathbf{D} \qquad \mathbf{J}^{\pi} \colon \mathbf{E2} \ \gamma \ \mathrm{to} \ \mathbf{f}^{+}.$						
804.82 [#] 7	(2 ⁺)		В	J^{π} : γ s to 0 ⁺ and 2 ⁺ , no γ to 4 ⁺ ; analogous to the K=2, 2 ⁺ band head of K ^{π} =2 ⁺ band observed in ²⁵⁰ Cf and ²⁵⁴ Fm.					
809.2 [‡] 6	10^{+}		D	J^{π} : E2 γ to 8 ⁺ .					
830.81 [@] 7	(2 ⁻)		В	J ^{π} : no γ s to 0 ⁺ or 4 ⁺ ; 785.1 γ to 2 ⁺ , analogous to the K=2,2 ⁻ band head of K ^{π} band observed in ²⁵⁰ Cf, and consistent with its properties.					
845.72 [#] 9	(3 ⁺)		В	J^{π} : γ s to 2 ⁺ and 4 ⁺ , no γ to 0 ⁺ ; member of $K^{\pi}=2^+$ band.					
867.52 [@] 7	(3 ⁻)		В	J^{π} : γ s to 4 ⁺ and 2 ⁺ , no γ to 0 ⁺ ; me	ember of $K^{\pi}=2^{-}$ band.				
900.33 [#] 25	(4 ⁺)		В	J^{π} : γ s to 4 ⁺ and 2 ⁺ , no γ to 0 ⁺ ; me	ember of $K^{\pi}=2^+$ band.				
917.03 [@] 12 969.83 6	(4 ⁻) (3 ⁺)		B B	J^{π} : γ to 4 ⁺ , no γ s to 2 ⁺ , 0 ⁺ ; memb J^{π} : E1 γ to (2 ⁻); M1 γ to (2 ⁺); γ s t the two-quasiparticle configuration of 1973Fi06. This assignment is cor	er of $K^{\pi}=2^{-}$ band. to 2^{+} and 4^{+} ; and no γ to of $\nu 1/2[620] + \nu 7/2[613]$ sistent with its population	0^+ .] was proposed by h in 252 Es ε decay.			

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

²⁵²Cf Levels (continued)

 $\gamma(^{252}\mathrm{Cf})$

[†] From a least-squares fit to $E\gamma$, by evaluators. [‡] Band(A): $K^{\pi}=0^+$ g.s. band.

[#] Band(B): $K^{\pi}=2^+ \gamma$ -vibrational band. Mixed with the K=3 state at 969.83 keV. ^{(@} Band(C): $K^{\pi}=2^-$ band.

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult.	α	Comments
45.72	2+	45.72 5	100	0.0 0+	E2	9.2×10 ² 5	α (L)=661 34; α (M)=188 10; α (N)=52.9 27; α (O)=13.1 7; α (P)=2.05 10; α (Q)=0.00469 21 B(E2)(W.u.)=349 24 E _{γ} : other: 44.0 keV 5 in Coulomb Excitation. Mult.: from α (M)exp=240, α (N+O+)=70 with uncertainties better than 15% in ²⁵² E ₁ α decay
151.73	4+	106.02 5	100	45.72 2+	E2	16.97 25	$\alpha(L)=12.22 \ 18; \ \alpha(M)=3.49 \ 5; \ \alpha(N)=0.981 \ 14; \ \alpha(O)=0.243 \ 4; \ \alpha(P)=0.0389 \ 6 \ \alpha(Q)=0.0001510 \ 22 \ Mult.: from \ \alpha(L2)exp=7.2, \ \alpha(L3)exp=3.8 \ with$
316.23	6+	164.5 <i>1</i>	100	151.73 4+	E2	2.49 11	α(K)=0.1557 22; α(L)=1.68 8; α(M)=0.478 22; α(N)=0.134 6; α(O)=0.0334 15 α(P)=0.00543 25; α(Q)=3.29×10 ⁻⁵ 11 E _γ : from Cf(¹⁸ O,Xγ) (2010Ta10). Mult.: Q from Iγ(in-plane)/Iγ(out-of-plane)=1.33 22 in Cf(¹⁸ O,Xγ); E2 from assignment to
536.6	8+	220.4 3	100	316.23 6+	E2	0.791 32	rotational band. α(K)=0.1268 23; α(L)=0.480 22; α(M)=0.135 6; α(N)=0.0380 17; α(O)=0.0095 4 $ α(P)=0.00156 7; α(Q)=1.37×10^{-5} 4 $ $ E_{\gamma}: from Cf(^{18}O,X\gamma) (2010Ta10). $ Mult.: Q from Iγ(in-plane)/Iγ(out-of-plane)=1.1 3 in Cf(^{18}O,X\gamma); E2 from assignment to rotational head
804.82	(2 ⁺)	759.1 <i>1</i>	100 8	45.72 2+	[E2]	0.0265 7	$\alpha(K) = 0.0177 \ 4; \ \alpha(L) = 0.00648 \ 20; \ \alpha(M) = 0.00169$ 5; $\alpha(N) = 0.000470 \ 15; \ \alpha(O) = 0.000120 \ 4$
		804.8 <i>1</i>	77 5	0.0 0+	[E2]	0.0236 6	$\alpha(P)=2.17\times10^{-7}; \alpha(Q)=7.86\times10^{-7} I9$ $\alpha(K)=0.01606 \ 35; \alpha(L)=0.00555 \ 17;$ $\alpha(M)=0.00144 \ 4; \alpha(N)=0.000400 \ 12$ $\alpha(O)=0.0001020 \ 31; \alpha(P)=1.86\times10^{-5} \ 6;$ $\alpha(Q)=7.01\times10^{-7} \ 17$
809.2	10+	272.6 5	100	536.6 8+	E2	0.373 14	$\begin{aligned} \alpha(\mathbf{K}) = 0.015 (10^{-17}) & (\mathbf{L}) = 0.202 \ 9; \ \alpha(\mathbf{M}) = 0.0564 \ 24; \\ \alpha(\mathbf{N}) = 0.0158 \ 7; \ \alpha(\mathbf{O}) = 0.00395 \ 17 \\ \alpha(\mathbf{P}) = 0.000661 \ 28; \ \alpha(\mathbf{Q}) = 7.69 \times 10^{-6} \ 23 \\ \mathbf{E}_{\gamma}: \ \text{from Cf}(^{18}\mathbf{O},\mathbf{X}\gamma) \ (2010\text{Ta}10). \\ \text{Mult.: } \mathbf{Q} \ \text{from I}\gamma(\text{in-plane})/I\gamma(\text{out-of-plane}) = 1.4 \ 4 \\ \text{in Cf}(^{18}\mathbf{O},\mathbf{X}\gamma); \ \text{E2 from assignment to rotational band} \end{aligned}$
830.81	(2 ⁻)	785.1 <i>1</i>	100	45.72 2+	[E1]	0.00719 16	$\alpha(K)=0.00577 \ 13; \ \alpha(L)=0.001066 \ 25; \alpha(M)=0.000257 \ 6; \ \alpha(N)=7.08\times10^{-5} \ 17; \alpha(O)=1.82\times10^{-5} \ 4 \alpha(P)=3.45\times10^{-6} \ 8; \ \alpha(Q)=1.88\times10^{-7} \ 4$

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

γ (²⁵²Cf) (continued)

E _i (level)	\mathbf{J}_i^π	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult.	α	Comments
845.72	(3 ⁺)	694.0 <i>1</i> 800.0 <i>1</i>	30.9 <i>21</i> 100 <i>7</i>	$151.73 4^+ \\ 45.72 2^+$			
867.52	(3 ⁻)	715.8 1	100 6	151.73 4+	[E1]	0.00847 19	α (K)=0.00678 <i>15</i> ; α (L)=0.001265 <i>30</i> ; α (M)=0.000306 <i>7</i> ; α (N)=8.42×10 ⁻⁵ <i>20</i> ; α (O)=2.17×10 ⁻⁵ <i>5</i>
		821.8 <i>1</i>	40 <i>3</i>	45.72 2+	[E1]	0.00664 15	$\begin{aligned} &\alpha(P) = 4.08 \times 10^{-6} \ 9; \ \alpha(Q) = 2.20 \times 10^{-7} \ 5 \\ &\alpha(K) = 0.00534 \ 12; \ \alpha(L) = 0.000981 \ 23; \\ &\alpha(M) = 0.000237 \ 6; \ \alpha(N) = 6.51 \times 10^{-5} \ 15; \\ &\alpha(O) = 1.68 \times 10^{-5} \ 4 \end{aligned}$
900.33	(4+)	748.6 <i>3</i>	100 17	151.73 4+	[E2]	0.0273 7	$\begin{aligned} &\alpha(P)=3.18\times10^{-6}\ 7;\ \alpha(Q)=1.75\times10^{-7}\ 4\\ &\alpha(K)=0.0181\ 4;\ \alpha(L)=0.00673\ 21;\\ &\alpha(M)=0.00176\ 6;\ \alpha(N)=0.000489\ 15;\\ &\alpha(O)=0.000124\ 4 \end{aligned}$
		854.6 <i>4</i>	45 10	45.72 2+	[E2]	0.0209 5	$\begin{aligned} &\alpha(P)=2.26\times10^{-5} \ 7; \ \alpha(Q)=8.07\times10^{-7} \ 20 \\ &\alpha(K)=0.01452 \ 32; \ \alpha(L)=0.00475 \ 14; \\ &\alpha(M)=0.00122 \ 4; \ \alpha(N)=0.000341 \ 10; \\ &\alpha(O)=8.69\times10^{-5} \ 26 \end{aligned}$
917.03	(4 ⁻)	765.3 1	100	151.73 4+	[E1]	0.00752 17	$\alpha(P)=1.59\times10^{-5} 5; \ \alpha(Q)=6.24\times10^{-7} 15$ $\alpha(K)=0.00604 \ 14; \ \alpha(L)=0.001118 \ 26;$ $\alpha(M)=0.000270 \ 6; \ \alpha(N)=7.43\times10^{-5} \ 17;$ $\alpha(O)=1.91\times10^{-5} \ 4$
969.83	(3 ⁺)	102.32 5	13.6 9	867.52 (3 ⁻)	[E1]	0.1394 20	$\alpha(P)=3.61\times10^{-6} 8; \ \alpha(Q)=1.9/\times10^{-7} 4$ $\alpha(L)=0.1043 \ 15; \ \alpha(M)=0.0260 \ 4; \ \alpha(N)=0.00711$ $10; \ \alpha(O)=0.001772 \ 25; \ \alpha(P)=0.000296 \ 4$ $\alpha(O)=1.004\times10^{-5} \ 14$
		139.03 5	100 8	830.81 (2 ⁻)	E1	0.2502 35	$\alpha(Q) = 1.00 \text{ M/IG} = 17$ $\alpha(K) = 0.1862 \ 26; \ \alpha(L) = 0.0479 \ 7; \ \alpha(M) = 0.01186$ $17; \ \alpha(N) = 0.00326 \ 5; \ \alpha(O) = 0.000817 \ 12$ $\alpha(P) = 0.0001406 \ 20; \ \alpha(Q) = 5.25 \times 10^{-6} \ 7$ Mult.: from $\alpha(L1+L2)\exp=0.03$ with uncertainty better than 15% in 252 Es s decay
		165.0 <i>1</i>	1.04 11	804.82 (2+)	M1	9.89	Mult., δ : M1 with δ =0.0 23 from α (L1+L2)exp=2.2 with uncertainty better than 15% in ²⁵² Es ε decay
		818.1 <i>1</i> 924.1 <i>1</i>	5.4 <i>4</i> 17.4 <i>11</i>	$\begin{array}{cccc} 151.73 & 4^+ \\ 45.72 & 2^+ \end{array}$			<u></u>

 † From $^{252}\mathrm{Es}\ \varepsilon$ decay, except where noted.

²⁵²₉₈Cf₁₅₄

Adopted Levels, Gammas

 $^{252}_{98}{\rm Cf}_{154}$