Adopted Levels:inferred

History

Type Author Citation Literature Cutoff Date
Full Evaluation A. M. Mattera, S. Zhu, A. B. Hayes, E. A. Mccutchan NDS 172, 543 (2021)

1-Jan-2021

 $Q(\beta^-)=2500 \ SY; \ S(n)=4770 \ SY; \ S(p)=5400 \ SY; \ Q(\alpha)=5550 \ SY$ 2017Wa10 $\Delta Q(\beta^-)=200; \ \Delta S(n)=200; \ \Delta S(p)=200; \ \Delta Q(\alpha)=280 \ (2017Wa10).$ S(2n)=10560 (syst) 200 (2017Wa10).

1960Di03: 252 Bk produced in the decay chain of 252 U produced through successive neutron captures on 238 U in the first large scale thermonuclear test explosion (Ivy Mike) on November 1, 1952 in the Pacific Ocean. Neutrons were produced through deuterium-tritium fusion (En=14 MeV) and also from the fission of uranium. Airborne debris was collected on filter paper and larger samples collected from condensed debris from an adjacent atoll. Elements 94 to 100 were chemically extracted and purified. Pu, Am, and Cm fractions were measured with 12-inch 60° mass spectrometers. The abundances of the transcurium isotopes were determined from measuring α or β activities combined with known half-lives. The production of 252 Bk was inferred from the detection of 252 Cf ($T_{1/2}$ =2.647 y) assuming the following decay 252 U -> 252 Np -> 252 Pu -> 252 Am -> 252 Cf -> 252 Cf

Related articles: 1956Fi11, 1967Ho20, 1966Rg01, and 1969In01.

²⁵²Bk Levels

E(level) Comments

0.0? $\%\beta^{-}=100$

E(level): indirectly deduced from the detection of 252 Cf ($T_{1/2}$ =2.647 y) in the debris of a thermonuclear test. % β^- : expected to be the dominant decay mode of 252 Bk, considering the theoretical half-life for α decay is $10^{12.2}$ s (2019Mo01).

Theoretical β decay $T_{1/2} > 100 \text{ s } (2019\text{MoO1}).$