²⁵⁵Rf α decay (1.68 s) 2006He27,2001He35

History							
Туре	Author	Citation	Literature Cutoff Date				
Full Evaluation	E. Browne, J. K. Tuli	NDS 114, 1041 (2013)	1-Jan-2012				

Parent: ²⁵⁵Rf: E=0.0; $J^{\pi}=(9/2^{-})$; $T_{1/2}=1.68$ s 9; $Q(\alpha)=9055$ 4; % α decay=42 9

²⁵⁵Rf-T_{1/2}: From 2006He27. Other: 1.64 s 11 (2001He35).

²⁵⁵Rf-Q(α): from 2012Wa38 Other: 9056 4 (2011AuZZ).

²⁵⁵Rf-Possible configuration=9/2[734] (2006He27).

²⁵⁵Rf-%α decay: %SF=58 9, from Adopted Levels, Gammas; no evidence for ε decay (2001He35).

2006He27: ²⁵⁵Rf isotope produced by the ²⁰⁷Pb(⁵⁰Ti,2n) reaction at E=4.85 MeV/nucleon. Reaction products were separated from the primary beam by the SHIP velocity filter at GSI facility and implanted into a position-sensitive 16-strip PIPS detector.

Measured E γ , I γ , $\gamma\gamma$, α - γ coin, ce, lifetimes with a 'clover' HPGe detector (composite of four Ge crystals).

All data are from 2006He27, unless otherwise stated.

²⁵¹No Levels

E(level)	J ^π †	T _{1/2}	Comments
0.0 [‡]	(7/2 ⁺)	0.80 s <i>1</i>	%SF=0.0014 +31-12 (2006He27) %SF is estimated by 2006He27 from detection of one fission event following α decay of ²⁵⁵ Rf. T _{1/2} : from 2006He27. Possible configuration=7/2[624] (2006He27).
60.3 [‡] <i>3</i> 203.6 <i>2</i>	(9/2 ⁺) (9/2 ⁻)		Possible configuration=9/2[734] (2006He27).

[†] $J^{\pi'}$ s and configurations assigned by 2006He27 are based on comparisons of decay pattern of ²⁵⁵Rf with those of neighboring nuclides.

[‡] Band(A): 7/2[624] band.

α radiations

$E\alpha^{\dagger\ddagger}$	E(level)	$\mathrm{I}\alpha^{\textcircled{0}}$	HF	Comments
8575 [#] 16		1.0 5		Eα: statistical uncertainty=5 keV. Eα=8583 10 in 2001He35. HF=80 is consistent with α transition to the $9/2^-$ member of the $7/2[743]$ band in ²⁵¹ No.
8646 [#] 16		1.5 5		E α : statistical uncertainty=5 keV. This α group was not reported by 2001He35. HF=90 is consistent with α transition to the bandhead of the 7/2[743] band in ²⁵¹ No.
8678 [#] 17		3 1		Eα: statistical uncertainty=8 keV. Eα=8670 10, 8684 in 2001He35. HF=56 (2006He27) is consistent with an α transition to the $11/2^-$ member of $9/2[734]$ band, but the level energy difference of ≈38 keV between the 9/2 and 11/2 members is somewhat less than expected from systematics. 2006He27 suggest that the energy of this α group may be inflated by summing with conversion electrons resulting from the $11/2^-$ to $9/2^- \gamma$ transition in 251 No.
8906 [#] 17		2.5 10		E α : statistical uncertainty=8 keV. E α =8924 15 in 2001He35. Possible transition to g.s. as in 2001He35, but 2006He27 question this assignment due to relatively low HF=1344 as compared to those for neighboring nuclides. 2006He27 suggest that this α group may be due to sum of 8716 α and L and M conversion electrons.
8716 <i>16</i>	203.6	92 5	2.4	$E\alpha$: statistical uncertainty=4 keV. $E\alpha$ =8722 10 in 2001He35.

[†] Although several weak α groups have been reported in 2006He27 and in earlier studies (2001He35,1997He29), the fine structure of α particle decay of ²⁵⁵Rf remains tentative for the following reasons: 1. α energies can populate levels from which the transitions are highly converted and the electron lines can sum up with the α lines; 2. some α -particles escape the stop detector. Their energy loss in the stop detector produces a tail of the α line towards lower energies 3. radiation damage of the detectors

²⁵⁵Rf α decay (1.68 s) 2006He27,2001He35 (continued)

α radiations (continued)

gives rise to statistical fluctuations in the α spectrum. See 2006He27 for greater details. Some weak α groups are individually discussed. Weak lines at 8692, 8773, 8797, 8831 and 8897 are all assigned by 2001He35 as sum lines (α +ce).

- [‡] Three types of uncertainties are combined in quadrature: statistical uncertainty of 4-8 keV; systematic uncertainty of 15 keV from calibration methods/standards; uncertainty of 3 keV due to reproducibility of an α peak energy.
- [#] Tentative α group (2006He27).

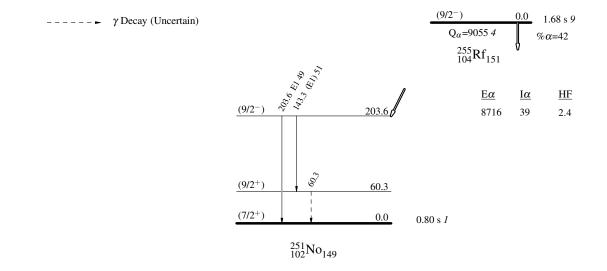
[@] For absolute intensity per 100 decays, multiply by 0.42 9.

$\gamma(^{25})$	¹ No)

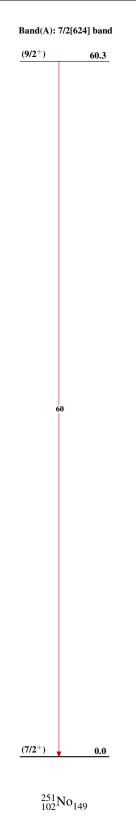
E_i (level)	\mathbf{J}_i^{π}	Eγ	Iγ	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. [†]	α^{\ddagger}	Comments
60.3 203.6	$(9/2^+)$ $(9/2^-)$	(60.3) 143.3 2	51 6	$ \begin{array}{c} \hline 0.0 & (7/2^+) \\ 60.3 & (9/2^+) \end{array} $	(E1)	0.0669	α (L)exp + α (M)exp<0.25 (2006He27)
203.0	()/2)	115.5 2	510	00.5 (72)		0.0009	$ \begin{array}{l} \alpha(\text{L})=0.0499 \ 8; \ \alpha(\text{M})=0.01248 \ 18; \ \alpha(\text{N}+)=0.00455 \ 7 \\ \alpha(\text{N})=0.00348 \ 5; \ \alpha(\text{O})=0.000905 \ 13; \ \alpha(\text{P})=0.0001546 \\ 23; \ \alpha(\text{Q})=5.14\times10^{-6} \ 8 \end{array} $
		203.6 2	49 6	0.0 (7/2 ⁺)	E1	0.1143	$\begin{aligned} &\alpha(\text{K})\exp{<0.1} (2006\text{He27}); \ \alpha(\text{L})\exp{+\alpha(\text{M})\exp{<0.1}} \\ &(2006\text{He27}) \\ &\alpha(\text{K})=0.0857 \ 13; \ \alpha(\text{L})=0.0213 \ 3; \ \alpha(\text{M})=0.00530 \ 8; \\ &\alpha(\text{N}+)=0.00194 \ 3 \\ &\alpha(\text{N})=0.001482 \ 21; \ \alpha(\text{O})=0.000388 \ 6; \ \alpha(\text{P})=6.84\times10^{-5} \\ &10; \ \alpha(\text{Q})=2.52\times10^{-6} \ 4 \end{aligned}$

[†] From ce data (2006He27).

[‡] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.


^x γ ray not placed in level scheme.

²⁵⁵Rf α decay (1.68 s) 2006He27,2001He35


Decay Scheme

Legend

Intensities: % photon branching from each level

$\frac{2^{55} \text{Rf} \ \alpha \ \text{decay} \ (1.68 \ \text{s})}{2006 \text{He} 27,2001 \text{He} 35}$

