$^{254}\mathbf{No}~\alpha$ decay

History						
Туре	Author	Citation	Literature Cutoff Date			
Full Evaluation	Y. Akovali	NDS 94,131 (2001)	1-Aug-2001			

Parent: ²⁵⁴No: E=0.0; $J^{\pi}=0^+$; $T_{1/2}=51$ s *10*; $Q(\alpha)=8226$ *13*; % α decay=90 4

²⁵⁰Fm Levels

Comments

E(level)	J^{π}	

0.0[†] 0⁺

 $(44^{\dagger} 5)$ 2⁺ E(level): from systematics of 2⁺ levels.

[†] Band(A): $K=0^+$ g.s. band.

α radiations

Eα	E(level)	HF	Comments
(8050 15)	(44)	_	<i>Eα</i> : this <i>α</i> transition to the expected 2 ⁺ state has not been observed. <i>Eα</i> (to 44 level)=8050 <i>15</i> is from <i>Eα</i> (to g.s.) and <i>E</i> (2 ⁺ level)=44 5 which is obtained from systematics of 2 ⁺ levels. <i>Iα</i> : calculations by assuming that Hf(8050 <i>α</i> to 2 ⁺)=4.5 <i>10</i> , which is extrapolated from Hf(8402 <i>α</i> from 2 ⁵⁶ No to 2 ⁺ state In ²⁵² Fm)=4.8 8, give I <i>α</i> =14 4. A similar trend to HF's for <i>α</i> 's from ²⁵⁴ Fm and ²⁵² Fm nuclei is assumed In this extrapolation
8093 <i>13</i>	0.0	1.0	E α : the measured energies are $E\alpha$ (to g.s.)=8100 20 (1967Gh01), 8110 30 (1967Mi03), 8086 20 (1985He22). These energies were used In the mass adjustment by 1995Au04, and $Q(\alpha)(^{254}No)=8226$ 13 is recommended. $E\alpha$ (to g.s.)=8093 13 is calculated from this $Q(\alpha)$. Earlier measurement: $E\alpha=8100$ 50 (1966Za04). I α : since only one α has been observed, No I α is adopted here. From the arguments given below, one May deduce I α (8093 α)=80 5 per 100 α decays: by assuming that I α 's of the expected weaker α transitions to higher-energy levels would Be within the uncertainties of I α (to g.s.) and I α (to 2 ⁺ state), I α (8093 α) May Be deduced from I α (to g.s.)+I α (to 44 level)=100 and relative hindrance factors. Hf(α to 44 level)/Hf(α to g.s.)=4.5 10 yields I α (to g.s.)=86 4 per 100 α decays,. one can estimate I α (8093 α)=75 5 is obtained for $r_0(^{250}Fm)=1.460$ 10, In agreement with I α (8093 α)=86 4 obtained from Hf(α to 44 level)=4.5 10. Unweighted average these two is I α (8093 α)=80 5.

254 No α decay

Band(A): K= 0^+ g.s. band

<u>2</u>⁺ 44

0+ 0.0

 $^{250}_{100}\mathrm{Fm}_{150}$