Adopted Levels

Type Author Citation Literature Cutoff Date
Full Evaluation Y. Akovali NDS 94,131 (2001) 1-Aug-2001

 $Q(\beta^-) = -8.5 \times 10^2 \ syst; \ S(n) = 6.02 \times 10^3 \ syst; \ S(p) = 3.79 \times 10^3 \ syst; \ Q(\alpha) = 6.83 \times 10^3 \ syst$ 2012Wa38 Note: Current evaluation has used the following Q record -801 syst 5976 syst 3742 syst 6878 syst 1995Au04.

For calculations of fission barrier, see for example, 1980Ku14 and 1991Os05.

²⁵⁰Es Levels

E(level)	${ m J}^\pi$	$T_{1/2}$	Comments
0.0	(6 ⁺)	8.6 h <i>1</i>	%ε>97; %α<3
			$T_{1/2}$: measured by 1977Fr03. Earlier measurement: 8.3 h 2 (1970Ah01).
			J^{π} : the log ft values for ε decays to (5) ⁻ and (6) ⁻ states in ²⁵⁰ Cf suggest J=5 or 6.
			In analogy to ²⁴⁵ Pu, ²⁴⁷ Cm and ²⁴⁹ Cf, the 155th odd neutron probably is in the n 9/2[734] state;
			analogy to ²⁴⁹ Es suggests p 3/2[521] orbital, analogy to ²⁵¹ Es, ²⁵³ Es suggests p 7/2[633] for the 99th proton. The most probable assignment is, therefore, 6 ⁺ ,(p 3/2[521],n 9/2[734]).
			The ε decays to 1457-, 1478- and 1499-keV levels in 250 Cf are consistent with ε transitions from
			p 7/2[633] to n 9/2[734], from p 3/2[521] to n 3/2[622], and from p 3/2[521] to n 1/2[620] states, respectively.
			α decay was not observed, and an upper limit of 3% was given by 1970Ah01.
0.0+x	$1^{(-)}$	2.22 h 5	% <i>€</i> ≤100
			$T_{1/2}$: measured by 1980Ah03; earlier measurement: 2.1 h 2 (1970Ah01).
			J^{π} : J=1 from the log ft values for ε decays to 0^+ , 2^+ , and 2^- states in 250 Cf. 1980Ah03 assigned 1^- ,(p 7/2[633],n 9/2[734]) configuration.
			Only the ε decay was studied; no α' s were observed.
			E(level): the level energy has not been determined. The authors of 1980Ah03 assigned this level to an isomeric state by using the Gallagher-Moszkowski rule. The 8 ⁻ ,(p 7/2[633],n 9/2[734]) state is expected to lie lower than the 1 ⁻ ,(p 7/2[633],n 9/2[734]) state, suggesting, therefore, the 1 ⁻ is not the g.s.