$^{250}\mathrm{Es}\ \varepsilon\ \mathrm{decay}\ (\mathbf{2.22\ h})$

		History	
Type	Author	Citation	Literature Cutoff Date
Full Evaluation	Y. Akovali	NDS 94,131 (2001)	1-Aug-2001

Parent: 250 Es: E=0.0+x; J^{π} =1 $^{(-)}$; $T_{1/2}$ =2.22 h 5; $Q(\varepsilon)$ =2100 SY; $\%\varepsilon+\%\beta^+$ decay≤100.0 250 Es- $\%\varepsilon+\%\beta^+$ decay: Additional information 1.

Q+=2100 100 is recommended by 1995Au04 for ε decay of 250 Es ground state. The excitation energy of the parent 2.22-H 250 Es isomeric state has not been determined experimentally. By assuming that the energy difference between the $^{1-}$,(p 7/2[633],n 9/2[734]) configuration (2.22-H state)and the $^{6+}$,(p 3/2[521],n 9/2[734]) ground state of 250 Es is less than the $\Delta Q(\varepsilon)$ value of 100 keV, calculations are carried here by taking Q+(2.22-H 250 Es)=2150 150.

²⁵⁰Cf Levels

E(level)	$J^{\pi \dagger}$	E(level)	$J^{\pi \dagger}$	E(level)	$J^{\pi^{\dagger}}$	E(level)	J^{π}
0.0	0+	905.89 2	3-	1154.24 10	0+	1244.50 8	(2+)
42.721 5	2+	951.98 2	4^{-}	1175.52 <i>3</i>	1-	1266.6 2	0_{+}
141.875 <i>10</i>	4+	1031.852 <i>21</i>	2+	1189.39 <i>3</i>	2+	1296.60 <i>4</i>	2+
871.57 <i>3</i>	2-	1071.37 2	3+	1209.97 <i>4</i>	$(2)^{-}$	1658.00 <i>4</i>	2+

[†] ADOPTED values.

ε, β^+ radiations

E(decay)	E(level)	Ιβ ⁺ #	$I\varepsilon^{\dagger \ddagger \#}$	Log ft	$I(\varepsilon + \beta^+)^{\#}$	Comments
(442 SY)	1658.00		4.8 3	6.5 5	4.8 3	ε K=0.66 8; ε L=0.24 6; ε M+=0.094 25
(803 SY)	1296.60		0.28 3	8.29 20	0.28 3	ε K=0.717 <i>15</i> ; ε L=0.206 <i>11</i> ; ε M+=0.077 5
(833 SY)	1266.6		0.95 5	7.80 19	0.95 5	ε K=0.720 <i>14</i> ; ε L=0.204 <i>10</i> ; ε M+=0.076 5
(855 SY)	1244.50		1.71 10	7.57 19	1.71 10	ε K=0.721 <i>13</i> ; ε L=0.203 <i>9</i> ; ε M+=0.075 <i>4</i>
(890 SY)	1209.97		3.01 20	7.36 18	3.01 20	ε K=0.723 <i>12</i> ; ε L=0.202 8; ε M+=0.075 4
$(910 \ SY)$	1189.39		0.32 5	8.35 19	0.32 5	ε K=0.725 11; ε L=0.201 8; ε M+=0.074 4
$(924 \ SY)$	1175.52		2.31 13	7.51 <i>17</i>	2.31 13	ε K=0.725 11; ε L=0.200 8; ε M+=0.074 4
(945 SY)	1154.24		0.38 5	8.31 <i>17</i>	0.38 5	ε K=0.727 <i>10</i> ; ε L=0.200 7; ε M+=0.074 3
$(1068 \ SY)$	1031.852		23.7 13	6.63 15	23.7 13	ε K=0.733 8; ε L=0.196 6; ε M+=0.0719 23
(1228 SY)	871.57		5.6 9	7.38 14	5.6 9	ε K=0.738 6; ε L=0.192 4; ε M+=0.0701 17
(2057 SY)	42.721	0.032 19	8.1 18	7.69 12	8.5 18	av E β =514 66; ε K=0.7502; ε L=0.1806 15; ε M+=0.0653 7
(2100 SY)	0.0	0.23 12	51 5	6.91 8	51 5	av E β =533 66; ε K=0.7502; ε L=0.1802 15; ε M+=0.0651 6

[†] The intensities are given per 100 b+ decay.

[‡] Relative decay branches to excited levels are deduced from intensity balances; the $\varepsilon+\beta^+$ decay branch to the ground state is obtained from I(K x-ray; measured)=I(K x-ray; calculated). The K x-ray intensity calculated by using theoretical $\varepsilon K/(\varepsilon+\beta^+)$ ratios for each level and $\alpha(K)$ conversion coefficients for all gammas. Fluorescence yield of 0.973 4 (1979Ah01) is used.

[#] For absolute intensity per 100 decays, multiply by ≤0.98.

						²⁵⁰ Es	ε decay ((2.22 h) (continu	<u>ed)</u>
							$\underline{\gamma}$	(250Cf)	
Californium	x-rays (1980	Ah03):							
	E(x-ray)	(same		-ray) s As Ιγ΄	s)				
	109.8 1 115.0 1 129.7 2 133.7 2		34. 13.	2 16 7 24 1 9 7 4	-	$\mathbb{K}\alpha_2$ x ra $\mathbb{K}\alpha_1$ x ra $\mathbb{K}\beta_1'$ x ra $\mathbb{K}\beta_2'$ x ra	y ay		
$\mathrm{E}_{\gamma}^{\dagger}$	$_{\mathrm{I}_{\gamma}}$ ‡&	$E_i(level)$	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult.#	$\delta^{\#}$	α^a	Comments
(34.325 <i>5</i>) 42.721 <i>5</i>	@ 0.028 2	905.89 42.721	3 ⁻ 2 ⁺	871.57 0.0	2 ⁻ 0 ⁺	M1+E2 E2	0.42 5	7.4×10 ² 11 1293	$\alpha(L)$ =939; $\alpha(M)$ =266 E_{γ} : adopted from 8.6-H 250 Es ε decay. E_{γ} =42.7 2 was obtained by 1980Ah03 from the electron lines. I_{γ} : calculated from Ice(M)=7.5 4 (1980Ah03) and $\alpha(M)$ =266 only the Ce(M) and Ce(N) lines of this transition were observed.
(46.093 5)	@	951.98	4-	905.89	3-	M1+E2	0.40 2	200 10	Mult.: adopted from 8.6-H 250 Es ε decay.
(80.412 10)	@	951.98	4 ⁻	871.57		E2	0.10 2	63.3	
(99.160 10)	0.034 5	141.875	4+	42.721	2+	E2		23.8	$\alpha(L)$ =17.0; $\alpha(M)$ =4.84; $\alpha(N+)$ =1.934 γ was not observed; its energy is from 8.6-H ²⁵⁰ Es ε decay; I γ is calculated from intensity balance At the 141.88 level.
(119.4 3)	0.000034 15	1071.37	3+	951.98	4-	[E1]		0.0956	$\alpha(L)$ =0.0714; $\alpha(M)$ =0.01769; $\alpha(N+)$ =0.00656 E_{γ} : γ was not observed In 2.22-H ²⁵⁰ Es ε decay. Energy is from ²⁵⁰ Bk β ⁻ decay. I_{γ} : calculated from $I_{\gamma}(119\gamma)/I_{\gamma}(1028\gamma)$ =0.0015 5/10.9 3, measured
126.01 3)	0.00190 17	1031.852	2+	905.89	3-	[E1]		0.0834	In 250 Bk β^- decay. $\alpha(L)=0.0622$; $\alpha(M)=0.01541$; $\alpha(N+)=0.00573$ E_{γ} : transition was not observed In 2.22-H 250 Es ε decay. Its energy was measured In 250 Bk β^- decay. I_{γ} : photon intensity is calculated from the ratio measured In 250 Bl
(160.26 4)	0.0086 6	1031.852	2+	871.57	2-	[E1]		0.1859	$β^-$ decay: Iγ(126γ)/Iγ(989γ)=0.0140 12/100. α(K)= 0.1403; $α(L)$ =0.0340; $α(M)$ =0.00840; $α(N+)$ =0.00313 $E_γ$: transition was not observed In 2.22-H ²⁵⁰ Es $ε$ decay. Its energy was measured In ²⁵⁰ Bk $β^-$ decay.
(165.44 <i>15</i>)	0.00007 3	1071.37	3+	905.89	3-	[E1]		0.1726	I _γ : photon intensity is calculated from the ratio measured In ²⁵⁰ Bk β^- decay: I _γ (160γ)/I _γ (989γ)=0.0633 44/100. α (K)=0.1305; α (L)=0.0315; α (M)=0.00776; α (N+)=0.00289 E _γ : γ was not observed In 2.22-H ²⁵⁰ Es ε decay. Energy is from

2

²⁵⁰Es ε decay (2.22 h) (continued)

γ (250Cf) (continued)

	$\mathrm{E}_{\gamma}^{\dagger}$	Ι _γ ‡&	$E_i(level)$	\mathbf{J}_i^{π}	E_f J_f^{π}	Mult.#	α^a	Comments
	(199.72 20)	0.000055 17	1071.37	3+	871.57 2	[E1]	0.1127	²⁵⁰ Bk β ⁻ decay. I _γ : calculated from I _γ (165γ)/I _γ (1028γ)=0.0030 4/10.9 3, measured In ²⁵⁰ Bk β ⁻ decay. α (K)=0.0861; α (L)=0.01986; α (M)=0.00488; α (N+)=0.00182 E _γ : γ was not observed In 2.22-H ²⁵⁰ Es ε decay. Energy is from ²⁵⁰ Bk β ⁻ decay.
	(303.95 20)	0.083 14	1175.52	1-	871.57 2	[M1,E2]	1.0 8	I _y : calculated from I γ (199 γ)/I γ (1028 γ)=0.0024 3/10.9 3, measured In ²⁵⁰ Bk β^- decay. E _y : energy is from ²⁵⁰ Bk β^- decay. This transition was not observed In ²⁵⁰ Es ε decays. I _y : calculated from I γ (303 γ)/I γ (1133 γ)=0.51 5/4.30 22, measured In ²⁵⁰ Bk
	586.6 2 626.1 2 *659.7 3	0.40 <i>10</i> 1.2 <i>1</i> 0.48 <i>9</i>	1658.00 1658.00	2 ⁺ 2 ⁺	1071.37 3 ⁺ 1031.852 2 ⁺	M1(+E2) M1(+E2)	0.24 <i>I</i> 0.24 <i>I</i>	β^- decay. $\alpha(K)\exp=0.18\ 5$; $\alpha(L)=0.4$ $\alpha(K)\exp=0.18\ 3$; $\alpha(L)\exp=0.044\ 9$ $\alpha(K)\exp=0.25\ 6$, $\alpha(L)\exp=0.058\ 19\ (1980Ah03)$.
,	(764.2 <i>I</i>) (786.26 <i>14</i>)	@ 0.19 <i>4</i>	905.89 1658.00	3 ⁻ 2 ⁺	141.875 4 ⁺ 871.57 2 ⁻	E1 [E1]	0.00758 0.00721	$\alpha(K)$ =0.00579; $\alpha(L)$ =0.00107 E $_{\gamma}$: this γ was not observed In 2.22-H 250 Es ε decay; its energy is from 250 Bk β^- decay.
	^x 802.9 2	0.44 9				(M1+E2)		I_{γ} : calculated from adopted branching ratios. $\alpha(K) \exp = 0.066 \ 20 \ (1980Ah03)$. $\alpha(K)(M1) = 0.100$, $\alpha(K)(E2) = 0.0164$.
	(810.2 <i>I</i>) 828.9 <i>I</i> (863.2 <i>I</i>) 889.9 2 929.4 <i>3</i>	@ 5.6 9 @ 0.45 7 0.10 7	951.98 871.57 905.89 1031.852 1071.37	4 ⁻ 2 ⁻ 3 ⁻ 2 ⁺ 3 ⁺	141.875 4 ⁺ 42.721 2 ⁺ 42.721 2 ⁺ 141.875 4 ⁺ 141.875 4 ⁺	E1 E1 E1 [E2] [E2]	0.00684 0.00658 0.00613 0.01961 0.0180	$\alpha(K)$ =0.00528; $\alpha(L)$ = 0.00097 $\alpha(K)$ =0.01376; $\alpha(L)$ =0.00439 $\alpha(K)$ =0.0128; $\alpha(L)$ =0.00394
	989.1 <i>I</i> 1028.5 <i>3</i>	13.6 9 0.25 7	1071.37 1031.852 1071.37	2 ⁺ 3 ⁺	42.721 2 ⁺ 42.721 2 ⁺	E2 (E2)	0.01603 0.0149	$\alpha(K)=0.0125$, $\alpha(L)=0.00394$ $\alpha(K)=0.01153$; $\alpha(L)=0.00338$ $\alpha(K)=0.01079$; $\alpha(L)=0.00308$ Mult.: determined In ²⁵⁰ Bk β^- decay.
	1031.9 <i>I</i> 1047.8 <i>5</i> *1068.2 <i>5</i>	10.8 8 ≈0.1 ≈0.1	1031.852 1189.39	2 ⁺ 2 ⁺	0.0 0 ⁺ 141.875 4 ⁺	E2 [E2]	0.01480 0.0144	Mult.: determined in $^{2-6}$ Bk β decay. $\alpha(K)=0.01074$; $\alpha(L)=0.00306$ $\alpha(K)=0.0105$; $\alpha(L)=0.00295$ 1980Ah03 suggested that the 1068.2 γ decays from the 1,3 $^-$ collective state seen In (d,d') At 1210 keV, to the 4 $^+$ state of the g.s. band. The authors pointed out that the expected 1167.4-keV transition from this 3 $^-$ state to the 2 $^+$ of g.s. band would Be obscured by the 1167.3 γ which is placed to deexcite the 1210-keV 2 $^-$, (N 9/2[734], N 5/2[622]) state, identified In (d,p) reaction, to the 4 $^+$ g.s. band. On their level scheme, the 1068.2 γ is shown however, to decay from the 2 $^-$ state to the 4 $^+$ of g.s. band, competing with an E1 transition. if the 1068.2 were to decay from the 3 $^-$ state, an ε decay with \approx 0.1% intensity (deduced from intensity balance, excluding any contribution from possible

 ω

²⁵⁰Es ε decay (2.22 h) (continued)

γ (250Cf) (continued)

$\mathbb{E}_{\gamma}^{\dagger}$	Ι _γ ‡&	$E_i(level)$	\mathtt{J}_{i}^{π}	\mathbb{E}_f	\mathbf{J}_f^{π}	Mult.#	α^a	$I_{(\gamma+ce)}$ &	Comments
1103.0 <i>3</i> 1111.5 <i>3</i> 1133.0 <i>3</i> 1146.7 <i>3</i>	0.09 <i>3</i> 0.27 <i>4</i> 0.70 <i>9</i> 0.20 <i>3</i>	1244.50 1154.24 1175.52 1189.39	(2 ⁺) 0 ⁺ 1 ⁻ 2 ⁺	141.875 42.721 42.721 42.721	2 ⁺ 2 ⁺	[E2] [E2] [E1] E0+E2	0.01306 0.0129 0.00385	0.22 4	1167.4 γ to the 4 ⁺ state) would have $\log ft \approx 8.8$, which is quite small for a second-forbidden β transition from the 1 ⁻ parent. IT is possible that the 1068.2 γ is a doublet, decaying from both the 3 ⁻ and 2 ⁻ states At 1210 keV. Because of problems mentioned above, this γ is not placed on the decay scheme here. $\alpha(K)=0.00960$; $\alpha(L)=0.00261$ $\alpha(K)=0.00947$; $\alpha(L)=0.00256$ $\alpha(K)=0.00311$; $\alpha(L)=0.00056$ $\alpha(K)=0.00311$; $\alpha(L)=0.00056$ the expected ce intensities from E2 component are Ice(K)=0.00180,
11542.2		1154.04	0+	0.0	0+	F0			Ice(L)=0.00048. The measured Ice(K)=0.015 3 is then mostly due to the E0 component: Ice(K;E0)=0.013 3. The unobserved higher-shell electron intensity, Ice(LMN), can Be estimated As 0.0046 by assuming the same ratio observed for the 1154.3 keV E0 transition.
1154.3 2		1154.24	0+	0.0	0+	E0			K/Total ce=0.74 6, L/Total ce=0.14 4, M/Total ce=0.08 3 \$ N/Total ce≈0.04.
1154.9 <i>3</i>	0.10 2	1296.60	2+	141.875	4+	[E2]	0.0120		$\alpha(K)=0.00888; \ \alpha(L)=0.00235$
1167.3 2	3.0 2	1209.97	$(2)^{-}$	42.721	2+	E1	0.00366		$\alpha(K)=0.00296; \alpha(L)=0.00053$
1175.5 2	1.60 9	1175.52	1-	0.0	0_{+}	E1	0.00362		$\alpha(K)=0.00292; \ \alpha(L)=0.00052$
1201.7 2	1.25 9	1244.50	(2^{+})	42.721	2+	[E2,M1]	0.027 16		$\alpha(K)=0.00212 \ 13; \ \alpha(L)=0.0046 \ 25$
1223.8 2	0.33 3	1266.6	0_{+}	42.721		[E2]	0.01078		$\alpha(K)=0.00804; \ \alpha(L)=0.00206$
1244.4 2	0.35 3	1244.50	(2^{+})	0.0	0_{+}	[E2]	0.01045		$\alpha(K)=0.00781; \alpha(L)=0.00198$
1254.0 2	≈0.05	1296.60	2+	42.721		E0+E2		0.177 23	K/Total ce=0.56, L/Total ce=0.11, M/Total ce=0.040.
1266.6 2		1266.6	0_{+}	0.0	0_{+}	E0			K/Total ce=0.79 6, L/Total ce=0.153 14, M/Total ce=0.042 6.
(1296.54 13)	0.0094 13	1296.60	2+	0.0	0+	[E2]	0.00969		$E_{\gamma}I_{\gamma}$: transition was not observed In 2.22-H ²⁵⁰ Es ε decay. Its energy was measured by 1979Re01 In ²⁵⁰ Bk β^- decay. The intensity, I_{γ} =0.0094 I_{β} , is calculated from I_{γ} (1296 γ)/ I_{γ} (1154 γ)=15 2/159 δ , also measured by 1979Re01.
(1516.22 7)	0.048 6	1658.00	2+	141.875	4+		0.00727		$\alpha(K)$ =0.00556; $\alpha(L)$ =0.00129 E_{γ} : 1516.22 γ was not observed In 2.22-H ²⁵⁰ Es ε decay; its energy is from ²⁵⁰ Bk β ⁻ decay. I_{γ} : calculated from adopted branching ratios.
1615.3 <i>3</i>	1.80 17	1658.00	2+	42.721	2+	E2	0.00498		$\alpha(K)\exp(0.0039 \ 17)$
1658.1 3	1.05 9	1658.00	2+	0.0	0^{+}	E2			$\alpha(K)\exp=0.0048 \ 20$

[†] Measurements of 1980Ah03. See also 1979Ah02. Earlier measurements: 1970Ah01, 1976Ya02.

 $^{^{\}ddagger}$ Relative photon intensity, measured by 1980Ah03. Intensities per 100 ε decay is obtained by normalizing the sum of all ε decay branches to 100. The x-ray intensities are utilized to deduce the ε decay to the g.s. the same procedure was applied by 1980Ah03; however, Q+(250 Es)=2070 was used by 1980Ah03 for $\varepsilon K/\varepsilon$ calculations which yielded slightly higher normalization factor than the one given here: the listed Iy's and Ice's were given As intensities per 100 ε decays

²⁵⁰Es ε decay (2.22 h) (continued)

γ (250Cf) (continued)

by 1980Ah03; these intensities correspond to per 102 5 ε decays here.

- # Deduced from ce work of 1980Ah03, except where noted. The electron intensities were normalized At Ice(K 989.2 γ)=0.156 to yield α (K)=0.115 (E2 theory). Multipolarities In square brackets are deduced from level scheme.
- © Intensity balance At the 905.89-, 951.46-keV levels, and the adopted γ branchings from these levels yield $I\gamma(34.325)=2.6\times10^{-6}$ 7, $I\gamma(46.098\gamma)=1.1\times10^{-6}$ 5, $I\gamma(80.4\gamma)=1.6\times10^{-6}$ 8, $I\gamma(764.2\gamma)=1.6\times10^{-4}$ 4, $I\gamma(810.2\gamma)=5.1\times10^{-5}$ 23, $I\gamma(863.2\gamma)=2.0\times10^{-4}$ 5.
- & For absolute intensity per 100 decays, multiply by 0.98 5.
- ^a Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.
- x γ ray not placed in level scheme.

$^{250}\mathrm{Es}~arepsilon~\mathrm{decay}~(2.22~\mathrm{h})$

6