$^{250}\mathrm{Es}\ \varepsilon\ \mathrm{decay}\ (\mathbf{2.22\ h})$ | | | History | | |-----------------|------------|-------------------|------------------------| | Type | Author | Citation | Literature Cutoff Date | | Full Evaluation | Y. Akovali | NDS 94,131 (2001) | 1-Aug-2001 | Parent: 250 Es: E=0.0+x; J^{π} =1 $^{(-)}$; $T_{1/2}$ =2.22 h 5; $Q(\varepsilon)$ =2100 SY; $\%\varepsilon+\%\beta^+$ decay≤100.0 250 Es- $\%\varepsilon+\%\beta^+$ decay: Additional information 1. Q+=2100 100 is recommended by 1995Au04 for ε decay of 250 Es ground state. The excitation energy of the parent 2.22-H 250 Es isomeric state has not been determined experimentally. By assuming that the energy difference between the $^{1-}$,(p 7/2[633],n 9/2[734]) configuration (2.22-H state)and the $^{6+}$,(p 3/2[521],n 9/2[734]) ground state of 250 Es is less than the $\Delta Q(\varepsilon)$ value of 100 keV, calculations are carried here by taking Q+(2.22-H 250 Es)=2150 150. ### ²⁵⁰Cf Levels | E(level) | $J^{\pi \dagger}$ | E(level) | $J^{\pi \dagger}$ | E(level) | $J^{\pi^{\dagger}}$ | E(level) | J^{π} | |-------------------|-------------------|--------------------|-------------------|------------------|---------------------|------------------|-----------| | 0.0 | 0+ | 905.89 2 | 3- | 1154.24 10 | 0+ | 1244.50 8 | (2+) | | 42.721 5 | 2+ | 951.98 2 | 4^{-} | 1175.52 <i>3</i> | 1- | 1266.6 2 | 0_{+} | | 141.875 <i>10</i> | 4+ | 1031.852 <i>21</i> | 2+ | 1189.39 <i>3</i> | 2+ | 1296.60 <i>4</i> | 2+ | | 871.57 <i>3</i> | 2- | 1071.37 2 | 3+ | 1209.97 <i>4</i> | $(2)^{-}$ | 1658.00 <i>4</i> | 2+ | [†] ADOPTED values. ### ε, β^+ radiations | E(decay) | E(level) | Ιβ ⁺ # | $I\varepsilon^{\dagger \ddagger \#}$ | Log ft | $I(\varepsilon + \beta^+)^{\#}$ | Comments | |---------------|----------|-------------------|--------------------------------------|----------------|---------------------------------|--| | (442 SY) | 1658.00 | | 4.8 3 | 6.5 5 | 4.8 3 | ε K=0.66 8; ε L=0.24 6; ε M+=0.094 25 | | (803 SY) | 1296.60 | | 0.28 3 | 8.29 20 | 0.28 3 | ε K=0.717 <i>15</i> ; ε L=0.206 <i>11</i> ; ε M+=0.077 5 | | (833 SY) | 1266.6 | | 0.95 5 | 7.80 19 | 0.95 5 | ε K=0.720 <i>14</i> ; ε L=0.204 <i>10</i> ; ε M+=0.076 5 | | (855 SY) | 1244.50 | | 1.71 10 | 7.57 19 | 1.71 10 | ε K=0.721 <i>13</i> ; ε L=0.203 <i>9</i> ; ε M+=0.075 <i>4</i> | | (890 SY) | 1209.97 | | 3.01 20 | 7.36 18 | 3.01 20 | ε K=0.723 <i>12</i> ; ε L=0.202 8; ε M+=0.075 4 | | $(910 \ SY)$ | 1189.39 | | 0.32 5 | 8.35 19 | 0.32 5 | ε K=0.725 11; ε L=0.201 8; ε M+=0.074 4 | | $(924 \ SY)$ | 1175.52 | | 2.31 13 | 7.51 <i>17</i> | 2.31 13 | ε K=0.725 11; ε L=0.200 8; ε M+=0.074 4 | | (945 SY) | 1154.24 | | 0.38 5 | 8.31 <i>17</i> | 0.38 5 | ε K=0.727 <i>10</i> ; ε L=0.200 7; ε M+=0.074 3 | | $(1068 \ SY)$ | 1031.852 | | 23.7 13 | 6.63 15 | 23.7 13 | ε K=0.733 8; ε L=0.196 6; ε M+=0.0719 23 | | (1228 SY) | 871.57 | | 5.6 9 | 7.38 14 | 5.6 9 | ε K=0.738 6; ε L=0.192 4; ε M+=0.0701 17 | | (2057 SY) | 42.721 | 0.032 19 | 8.1 18 | 7.69 12 | 8.5 18 | av E β =514 66; ε K=0.7502; ε L=0.1806 15; ε M+=0.0653 7 | | (2100 SY) | 0.0 | 0.23 12 | 51 5 | 6.91 8 | 51 5 | av E β =533 66; ε K=0.7502; ε L=0.1802 15; ε M+=0.0651 6 | [†] The intensities are given per 100 b+ decay. [‡] Relative decay branches to excited levels are deduced from intensity balances; the $\varepsilon+\beta^+$ decay branch to the ground state is obtained from I(K x-ray; measured)=I(K x-ray; calculated). The K x-ray intensity calculated by using theoretical $\varepsilon K/(\varepsilon+\beta^+)$ ratios for each level and $\alpha(K)$ conversion coefficients for all gammas. Fluorescence yield of 0.973 4 (1979Ah01) is used. [#] For absolute intensity per 100 decays, multiply by ≤0.98. | | | | | | | ²⁵⁰ Es | ε decay (| (2.22 h) (continu | <u>ed)</u> | |---------------------------------------|--|------------------|----------------------------------|----------------------------|----------------------------------|---|----------------------|--------------------------------|---| | | | | | | | | $\underline{\gamma}$ | (250Cf) | | | Californium | x-rays (1980 | Ah03): | | | | | | | | | | E(x-ray) | (same | | -ray)
s As Ιγ΄ | s) | | | | | | | 109.8 1
115.0 1
129.7 2
133.7 2 | | 34.
13. | 2 16
7 24
1 9
7 4 | - | $\mathbb{K}\alpha_2$ x ra $\mathbb{K}\alpha_1$ x ra $\mathbb{K}\beta_1'$ x ra $\mathbb{K}\beta_2'$ x ra | y
ay | | | | $\mathrm{E}_{\gamma}^{\dagger}$ | $_{\mathrm{I}_{\gamma}}$ ‡& | $E_i(level)$ | \mathbf{J}_i^{π} | E_f | \mathbf{J}_f^{π} | Mult.# | $\delta^{\#}$ | α^a | Comments | | (34.325 <i>5</i>)
42.721 <i>5</i> | @
0.028 2 | 905.89
42.721 | 3 ⁻
2 ⁺ | 871.57
0.0 | 2 ⁻
0 ⁺ | M1+E2
E2 | 0.42 5 | 7.4×10 ² 11
1293 | $\alpha(L)$ =939; $\alpha(M)$ =266
E_{γ} : adopted from 8.6-H 250 Es ε decay. E_{γ} =42.7 2 was obtained by 1980Ah03 from the electron lines.
I_{γ} : calculated from Ice(M)=7.5 4 (1980Ah03) and $\alpha(M)$ =266 only the Ce(M) and Ce(N) lines of this transition were observed. | | (46.093 5) | @ | 951.98 | 4- | 905.89 | 3- | M1+E2 | 0.40 2 | 200 10 | Mult.: adopted from 8.6-H 250 Es ε decay. | | (80.412 10) | @ | 951.98 | 4 ⁻ | 871.57 | | E2 | 0.10 2 | 63.3 | | | (99.160 10) | 0.034 5 | 141.875 | 4+ | 42.721 | 2+ | E2 | | 23.8 | $\alpha(L)$ =17.0; $\alpha(M)$ =4.84; $\alpha(N+)$ =1.934 γ was not observed; its energy is from 8.6-H ²⁵⁰ Es ε decay; I γ is calculated from intensity balance At the 141.88 level. | | (119.4 3) | 0.000034 15 | 1071.37 | 3+ | 951.98 | 4- | [E1] | | 0.0956 | $\alpha(L)$ =0.0714; $\alpha(M)$ =0.01769; $\alpha(N+)$ =0.00656
E_{γ} : γ was not observed In 2.22-H ²⁵⁰ Es ε decay. Energy is from ²⁵⁰ Bk β ⁻ decay.
I_{γ} : calculated from $I_{\gamma}(119\gamma)/I_{\gamma}(1028\gamma)$ =0.0015 5/10.9 3, measured | | 126.01 3) | 0.00190 17 | 1031.852 | 2+ | 905.89 | 3- | [E1] | | 0.0834 | In 250 Bk β^- decay.
$\alpha(L)=0.0622$; $\alpha(M)=0.01541$; $\alpha(N+)=0.00573$
E_{γ} : transition was not observed In 2.22-H 250 Es ε decay. Its energy was measured In 250 Bk β^- decay.
I_{γ} : photon intensity is calculated from the ratio measured In 250 Bl | | (160.26 4) | 0.0086 6 | 1031.852 | 2+ | 871.57 | 2- | [E1] | | 0.1859 | $β^-$ decay: Iγ(126γ)/Iγ(989γ)=0.0140 12/100.
α(K)= 0.1403; $α(L)$ =0.0340; $α(M)$ =0.00840; $α(N+)$ =0.00313
$E_γ$: transition was not observed In 2.22-H ²⁵⁰ Es $ε$ decay. Its energy was measured In ²⁵⁰ Bk $β^-$ decay. | | (165.44 <i>15</i>) | 0.00007 3 | 1071.37 | 3+ | 905.89 | 3- | [E1] | | 0.1726 | I _γ : photon intensity is calculated from the ratio measured In ²⁵⁰ Bk β^- decay: I _γ (160γ)/I _γ (989γ)=0.0633 44/100. α (K)=0.1305; α (L)=0.0315; α (M)=0.00776; α (N+)=0.00289 E _γ : γ was not observed In 2.22-H ²⁵⁰ Es ε decay. Energy is from | 2 # ²⁵⁰Es ε decay (2.22 h) (continued) # γ (250Cf) (continued) | | $\mathrm{E}_{\gamma}^{\dagger}$ | Ι _γ ‡& | $E_i(level)$ | \mathbf{J}_i^{π} | E_f J_f^{π} | Mult.# | α^a | Comments | |---|---|---|---|--|--|--------------------------------|--|---| | | (199.72 20) | 0.000055 17 | 1071.37 | 3+ | 871.57 2 | [E1] | 0.1127 | ²⁵⁰ Bk β ⁻ decay.
I _γ : calculated from I _γ (165γ)/I _γ (1028γ)=0.0030 4/10.9 3, measured In ²⁵⁰ Bk β ⁻ decay.
α (K)=0.0861; α (L)=0.01986; α (M)=0.00488; α (N+)=0.00182
E _γ : γ was not observed In 2.22-H ²⁵⁰ Es ε decay. Energy is from ²⁵⁰ Bk β ⁻ decay. | | | (303.95 20) | 0.083 14 | 1175.52 | 1- | 871.57 2 | [M1,E2] | 1.0 8 | I _y : calculated from I γ (199 γ)/I γ (1028 γ)=0.0024 3/10.9 3, measured In ²⁵⁰ Bk β^- decay.
E _y : energy is from ²⁵⁰ Bk β^- decay. This transition was not observed In ²⁵⁰ Es ε decays.
I _y : calculated from I γ (303 γ)/I γ (1133 γ)=0.51 5/4.30 22, measured In ²⁵⁰ Bk | | | 586.6 2
626.1 2
*659.7 3 | 0.40 <i>10</i>
1.2 <i>1</i>
0.48 <i>9</i> | 1658.00
1658.00 | 2 ⁺
2 ⁺ | 1071.37 3 ⁺
1031.852 2 ⁺ | M1(+E2)
M1(+E2) | 0.24 <i>I</i> 0.24 <i>I</i> | β^- decay.
$\alpha(K)\exp=0.18\ 5$; $\alpha(L)=0.4$
$\alpha(K)\exp=0.18\ 3$; $\alpha(L)\exp=0.044\ 9$
$\alpha(K)\exp=0.25\ 6$, $\alpha(L)\exp=0.058\ 19\ (1980Ah03)$. | | , | (764.2 <i>I</i>)
(786.26 <i>14</i>) | @
0.19 <i>4</i> | 905.89
1658.00 | 3 ⁻
2 ⁺ | 141.875 4 ⁺
871.57 2 ⁻ | E1
[E1] | 0.00758
0.00721 | $\alpha(K)$ =0.00579; $\alpha(L)$ =0.00107
E $_{\gamma}$: this γ was not observed In 2.22-H 250 Es ε decay; its energy is from 250 Bk β^- decay. | | | ^x 802.9 2 | 0.44 9 | | | | (M1+E2) | | I_{γ} : calculated from adopted branching ratios.
$\alpha(K) \exp = 0.066 \ 20 \ (1980Ah03)$. $\alpha(K)(M1) = 0.100$, $\alpha(K)(E2) = 0.0164$. | | | (810.2 <i>I</i>)
828.9 <i>I</i>
(863.2 <i>I</i>)
889.9 2
929.4 <i>3</i> | @
5.6 9
@
0.45 7
0.10 7 | 951.98
871.57
905.89
1031.852
1071.37 | 4 ⁻
2 ⁻
3 ⁻
2 ⁺
3 ⁺ | 141.875 4 ⁺ 42.721 2 ⁺ 42.721 2 ⁺ 141.875 4 ⁺ 141.875 4 ⁺ | E1
E1
E1
[E2]
[E2] | 0.00684
0.00658
0.00613
0.01961
0.0180 | $\alpha(K)$ =0.00528; $\alpha(L)$ = 0.00097
$\alpha(K)$ =0.01376; $\alpha(L)$ =0.00439
$\alpha(K)$ =0.0128; $\alpha(L)$ =0.00394 | | | 989.1 <i>I</i>
1028.5 <i>3</i> | 13.6 9
0.25 7 | 1071.37
1031.852
1071.37 | 2 ⁺
3 ⁺ | 42.721 2 ⁺
42.721 2 ⁺ | E2
(E2) | 0.01603
0.0149 | $\alpha(K)=0.0125$, $\alpha(L)=0.00394$
$\alpha(K)=0.01153$; $\alpha(L)=0.00338$
$\alpha(K)=0.01079$; $\alpha(L)=0.00308$
Mult.: determined In ²⁵⁰ Bk β^- decay. | | | 1031.9 <i>I</i>
1047.8 <i>5</i>
*1068.2 <i>5</i> | 10.8 8
≈0.1
≈0.1 | 1031.852
1189.39 | 2 ⁺
2 ⁺ | 0.0 0 ⁺
141.875 4 ⁺ | E2
[E2] | 0.01480
0.0144 | Mult.: determined in $^{2-6}$ Bk β decay. $\alpha(K)=0.01074$; $\alpha(L)=0.00306$ $\alpha(K)=0.0105$; $\alpha(L)=0.00295$ 1980Ah03 suggested that the 1068.2 γ decays from the 1,3 $^-$ collective state seen In (d,d') At 1210 keV, to the 4 $^+$ state of the g.s. band. The authors pointed out that the expected 1167.4-keV transition from this 3 $^-$ state to the 2 $^+$ of g.s. band would Be obscured by the 1167.3 γ which is placed to deexcite the 1210-keV 2 $^-$, (N 9/2[734], N 5/2[622]) state, identified In (d,p) reaction, to the 4 $^+$ g.s. band. On their level scheme, the 1068.2 γ is shown however, to decay from the 2 $^-$ state to the 4 $^+$ of g.s. band, competing with an E1 transition. if the 1068.2 were to decay from the 3 $^-$ state, an ε decay with \approx 0.1% intensity (deduced from intensity balance, excluding any contribution from possible | ω #### ²⁵⁰Es ε decay (2.22 h) (continued) ### γ (250Cf) (continued) | $\mathbb{E}_{\gamma}^{\dagger}$ | Ι _γ ‡& | $E_i(level)$ | \mathtt{J}_{i}^{π} | \mathbb{E}_f | \mathbf{J}_f^{π} | Mult.# | α^a | $I_{(\gamma+ce)}$ & | Comments | |--|--|--|---|---------------------------------------|----------------------------------|-------------------------------|------------------------------|---------------------|--| | 1103.0 <i>3</i>
1111.5 <i>3</i>
1133.0 <i>3</i>
1146.7 <i>3</i> | 0.09 <i>3</i>
0.27 <i>4</i>
0.70 <i>9</i>
0.20 <i>3</i> | 1244.50
1154.24
1175.52
1189.39 | (2 ⁺)
0 ⁺
1 ⁻
2 ⁺ | 141.875
42.721
42.721
42.721 | 2 ⁺
2 ⁺ | [E2]
[E2]
[E1]
E0+E2 | 0.01306
0.0129
0.00385 | 0.22 4 | 1167.4 γ to the 4 ⁺ state) would have $\log ft \approx 8.8$, which is quite small for a second-forbidden β transition from the 1 ⁻ parent. IT is possible that the 1068.2 γ is a doublet, decaying from both the 3 ⁻ and 2 ⁻ states At 1210 keV. Because of problems mentioned above, this γ is not placed on the decay scheme here. $\alpha(K)=0.00960$; $\alpha(L)=0.00261$ $\alpha(K)=0.00947$; $\alpha(L)=0.00256$ $\alpha(K)=0.00311$; $\alpha(L)=0.00056$ $\alpha(K)=0.00311$; $\alpha(L)=0.00056$ the expected ce intensities from E2 component are Ice(K)=0.00180, | | 11542.2 | | 1154.04 | 0+ | 0.0 | 0+ | F0 | | | Ice(L)=0.00048. The measured Ice(K)=0.015 3 is then mostly due to the E0 component: Ice(K;E0)=0.013 3. The unobserved higher-shell electron intensity, Ice(LMN), can Be estimated As 0.0046 by assuming the same ratio observed for the 1154.3 keV E0 transition. | | 1154.3 2 | | 1154.24 | 0+ | 0.0 | 0+ | E0 | | | K/Total ce=0.74 6, L/Total ce=0.14 4, M/Total ce=0.08 3 \$ N/Total ce≈0.04. | | 1154.9 <i>3</i> | 0.10 2 | 1296.60 | 2+ | 141.875 | 4+ | [E2] | 0.0120 | | $\alpha(K)=0.00888; \ \alpha(L)=0.00235$ | | 1167.3 2 | 3.0 2 | 1209.97 | $(2)^{-}$ | 42.721 | 2+ | E1 | 0.00366 | | $\alpha(K)=0.00296; \alpha(L)=0.00053$ | | 1175.5 2 | 1.60 9 | 1175.52 | 1- | 0.0 | 0_{+} | E1 | 0.00362 | | $\alpha(K)=0.00292; \ \alpha(L)=0.00052$ | | 1201.7 2 | 1.25 9 | 1244.50 | (2^{+}) | 42.721 | 2+ | [E2,M1] | 0.027 16 | | $\alpha(K)=0.00212 \ 13; \ \alpha(L)=0.0046 \ 25$ | | 1223.8 2 | 0.33 3 | 1266.6 | 0_{+} | 42.721 | | [E2] | 0.01078 | | $\alpha(K)=0.00804; \ \alpha(L)=0.00206$ | | 1244.4 2 | 0.35 3 | 1244.50 | (2^{+}) | 0.0 | 0_{+} | [E2] | 0.01045 | | $\alpha(K)=0.00781; \alpha(L)=0.00198$ | | 1254.0 2 | ≈0.05 | 1296.60 | 2+ | 42.721 | | E0+E2 | | 0.177 23 | K/Total ce=0.56, L/Total ce=0.11, M/Total ce=0.040. | | 1266.6 2 | | 1266.6 | 0_{+} | 0.0 | 0_{+} | E0 | | | K/Total ce=0.79 6, L/Total ce=0.153 14, M/Total ce=0.042 6. | | (1296.54 13) | 0.0094 13 | 1296.60 | 2+ | 0.0 | 0+ | [E2] | 0.00969 | | $E_{\gamma}I_{\gamma}$: transition was not observed In 2.22-H ²⁵⁰ Es ε decay. Its energy was measured by 1979Re01 In ²⁵⁰ Bk β^- decay. The intensity, I_{γ} =0.0094 I_{β} , is calculated from I_{γ} (1296 γ)/ I_{γ} (1154 γ)=15 2/159 δ , also measured by 1979Re01. | | (1516.22 7) | 0.048 6 | 1658.00 | 2+ | 141.875 | 4+ | | 0.00727 | | $\alpha(K)$ =0.00556; $\alpha(L)$ =0.00129
E_{γ} : 1516.22 γ was not observed In 2.22-H ²⁵⁰ Es ε decay; its energy is from ²⁵⁰ Bk β ⁻ decay.
I_{γ} : calculated from adopted branching ratios. | | 1615.3 <i>3</i> | 1.80 17 | 1658.00 | 2+ | 42.721 | 2+ | E2 | 0.00498 | | $\alpha(K)\exp(0.0039 \ 17)$ | | 1658.1 3 | 1.05 9 | 1658.00 | 2+ | 0.0 | 0^{+} | E2 | | | $\alpha(K)\exp=0.0048 \ 20$ | [†] Measurements of 1980Ah03. See also 1979Ah02. Earlier measurements: 1970Ah01, 1976Ya02. $^{^{\}ddagger}$ Relative photon intensity, measured by 1980Ah03. Intensities per 100 ε decay is obtained by normalizing the sum of all ε decay branches to 100. The x-ray intensities are utilized to deduce the ε decay to the g.s. the same procedure was applied by 1980Ah03; however, Q+(250 Es)=2070 was used by 1980Ah03 for $\varepsilon K/\varepsilon$ calculations which yielded slightly higher normalization factor than the one given here: the listed Iy's and Ice's were given As intensities per 100 ε decays #### ²⁵⁰Es ε decay (2.22 h) (continued) ## γ (250Cf) (continued) by 1980Ah03; these intensities correspond to per 102 5 ε decays here. - # Deduced from ce work of 1980Ah03, except where noted. The electron intensities were normalized At Ice(K 989.2 γ)=0.156 to yield α (K)=0.115 (E2 theory). Multipolarities In square brackets are deduced from level scheme. - © Intensity balance At the 905.89-, 951.46-keV levels, and the adopted γ branchings from these levels yield $I\gamma(34.325)=2.6\times10^{-6}$ 7, $I\gamma(46.098\gamma)=1.1\times10^{-6}$ 5, $I\gamma(80.4\gamma)=1.6\times10^{-6}$ 8, $I\gamma(764.2\gamma)=1.6\times10^{-4}$ 4, $I\gamma(810.2\gamma)=5.1\times10^{-5}$ 23, $I\gamma(863.2\gamma)=2.0\times10^{-4}$ 5. - & For absolute intensity per 100 decays, multiply by 0.98 5. - ^a Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified. - x γ ray not placed in level scheme. # $^{250}\mathrm{Es}~arepsilon~\mathrm{decay}~(2.22~\mathrm{h})$ 6