9 Be(25 Al, 25 Si γ) **2018Lo10** History | Type | Author | Citation | Literature Cutoff Date | | | |-----------------|--|------------------|------------------------|--|--| | Full Evaluation | M. Shamsuzzoha Basunia, Anagha Chakraborty | NDS 205,1 (2025) | 31-May-2025 | | | #### Additional information 1. Adapted/Edited the XUNDL dataset compiled by J. Chen (NSCL, MSU), May 17, 2018. 2018Lo10: E=118 MeV/nucleon 26 Si beam was produced by projectile fragmentation on a 550 mg/cm 2 thick 9 Be primary target with E=150 MeV/nucleon 36 Ar primary beam provided by the NSCL cyclotron. Beam fragments were separated by the A1900 separator. Secondary target was a 287 3 mg/cm 2 thick 9 Be. γ rays were detected with the CAESAR high-efficiency array consisting of 192 CsI(Na) scintillators and in a separate experiment, SeGA array comprised of 32-fold segmented HPGe detectors; the reaction residues were analyzed with the S800 spectrograph and identified according to energy loss versus time-of-flight. Measured E γ , I γ , particle- γ -coin, particle- γ -coin. Deduced levels, J, π . Comparison with shell-model calculations. Discussed astrophysical implication for 24 Al(p, γ) 25 Si reaction rate. #### ²⁵Si Levels | E(level) \dagger J^{π} | E(level) [†] | $J^{\pi \ddagger}$ | E(level) [†] | Jπ‡ | E(level) [†] | Jπ‡ | |------------------------------|-------------------------------------|--------------------|-----------------------------|-----|-----------------------|--| | 45 6 (3/2 | +) 1961 6
+) 2365 7
+) 2380 8 | $(9/2^+)$ | 2585 8
3035 9
3160 50 | | 3695 9
3802 8 | (9/2 ⁺)
(1/2 ⁺) | [†] From a least-squares fit to γ -ray energies by the evaluators. ## γ (25Si) | $E_i(level)$ | \mathbf{J}_i^{π} | E_{γ} | I_{γ}^{\dagger} | \mathbf{E}_f | \mathbf{J}_f^{π} | E_i (level) | \mathbf{J}_i^{π} | E_{γ} | I_{γ}^{\dagger} | \mathbf{E}_f | \mathbf{J}_f^{π} | |--------------|----------------------|--------------|------------------------|----------------|----------------------|---------------|----------------------|----------------|------------------------|----------------|----------------------| | 870 | $(1/2^+)$ | 825 4 | 90 7 | 45 | $(3/2^+)$ | 2585 | $(5/2^+)$ | 2585 12 | 39 11 | 0 | $(5/2^+)$ | | | | 870 <i>6</i> | 10 <i>3</i> | 0 | $(5/2^+)$ | 3035 | $(9/2^+)$ | 670 <i>5</i> | 100 | 2365 | $(9/2^+)$ | | 1961 | $(3/2^+)$ | 1091 6 | 68 12 | 870 | $(1/2^+)$ | 3160 | $(7/2^+)$ | 3160 <i>50</i> | 100 | 0 | $(5/2^+)$ | | | | 1916 7 | 10 8 | 45 | $(3/2^+)$ | 3695 | $(9/2^+)$ | 1315 7 | 45 8 | 2380 | $(7/2^+)$ | | | | 1961 8 | 22 9 | 0 | $(5/2^+)$ | | | 3695 <i>14</i> | 55 14 | 0 | $(5/2^+)$ | | 2365 | $(9/2^+)$ | 2365 7 | 100 | 0 | $(5/2^+)$ | 3802 | $(1/2^+)$ | 1841 <i>11</i> | 9 2 | 1961 | $(3/2^+)$ | | 2380 | $(7/2^+)$ | 2335 12 | 46 18 | 45 | $(3/2^+)$ | | | 2932 9 | 61 5 | 870 | $(1/2^+)$ | | | | 2380 12 | 54 22 | 0 | $(5/2^+)$ | | | 3757 12 | 30 4 | 45 | $(3/2^+)$ | | 2585 | $(5/2^+)$ | 2540 9 | 61 13 | 45 | $(3/2^+)$ | | | | | | | [†] Relative photon branching from each level. [‡] As given in 2018Lo10 on the basis of shell-model predictions. # ⁹Be(²⁵Al,²⁵Siγ) 2018Lo10 ### Level Scheme Intensities: % photon branching from each level