2 H(24 Na,p) 2021Ge09

History							
Type	Author	Citation	Literature Cutoff Date				
Full Evaluation	M. Shamsuzzoha Basunia, Anagha Chakraborty	NDS 205,1 (2025)	31-May-2025				

 $J^{\pi}(^{24m}Na)=1^{+}$.

Adapted/Edited the XUNDL dataset compiled by E.A. McCutchan (NNDC,BNL) January 4, 2022.

Beam=radioactive ion beam of ^{25m}Na from RESOLUT facility at FSU. E(^{25m}Na)=85.5 MeV. Target=Deuterated polyethylene, 517 $\mu g/\text{cm}^2$ thickness. Measured Ep, $\sigma(\theta)$ using a double-sided 300 μ m thick Si detector in the angular range of $\theta_{\text{lab}}=161.6^{\circ}-173.7^{\circ}$. Heavy reactants were measured with a downstream ionization chamber. DWBA and USDB shell model calculations. First measurement of (d,p) reaction from the isomeric 1⁺ state in ²⁴Na.

²⁵Na Levels

E(level) [†]	$J^{\pi \ddagger}$	<u>L</u> #	C^2S	Comments
1069	1/2+	0	0.19 10	E(level): mirror level of 870 (²⁵ Si).
3687	$3/2^{+}$	0	0.31 15	
3955	$(3/2^+)$			J^{π} : from shell model calculations.
4289	1/2+	0	0.44 22	E(level): mirror level of 3802 (²⁵ Si).

[†] From 2021Ge09.

[†] As listed in 2021Ge09. # Based on measured $d\sigma/d\Omega$ ($\approx 3^{\circ}$ to $\approx 8^{\circ}$) and DWBA.