$C(^{26}Ne,^{25}F\gamma)$ 2014Va02,2017Va24 History Type Author Citation Literature Cutoff Date Full Evaluation M. Shamsuzzoha Basunia, Anagha Chakraborty NDS 205,1 (2025) 31-May-2025 Includes $C(^{27}Na,^{25}F\gamma),(^{28}Na,^{25}F\gamma)$. Secondary beam also contained $^{24}F,^{25}Ne,^{29}Mg$, and ^{30}Mg (2014Va02). 2014Va02: ²⁵F was produced from fragmentation of ²⁶Ne and ^{27,28}Na secondary beams, E=54 to 65 MeV/nucleon, on an "active" target of plastic scintillator (thickness=103 mg/cm²), sandwiched by two carbon foils of thickness 51 mg/cm². ²⁵F nuclei were selected by SPEG spectrometer and identified by energy loss, total energy, time-of-flight, and focal-plane position information. Secondary beams of ²⁴F, ^{25,26}Ne, ^{27,28}Na and ^{29,30}Mg with energies 54-65 MeV/nucleon were obtained from fragmentation of ³⁶S primary beam, E=77.5 MeV/nucleon, bombarding a carbon target of thickness 348 mg/cm² at GANIL. Product nuclei were selected by the α spectrometer equipped with a 130 mg/cm² Al wedge at the dispersive focal plane. γ rays were detected by an array of 74 BaF₂ crystals. Measured Eγ, Iγ, particle-γ, particle-γγ coincidences, deduced ²⁵F level scheme. Comparison with shell model, and coupled-cluster calculations. Plastic scintillator target contained hydrogen as well. 2017Va24: ²⁵F was produced via one-proton knockout reaction from ²⁶Ne secondary beams, E=456 MeV/nucleon (at entrance), on a CH₂ target (thickness=922 mg/cm²). ²⁶Ne was produced from fragmentation of ⁴⁰Ar beam, E=490 MeV/nucleon, on a ⁹Be target (thickness=4 g/cm²). Fragments were separated and selected by the fragment separator at GSI facility and identified event-by-event from energy loss and time-of-flight. γ rays were detected by 159 NaI crystals of the 4π Crystal ball detector. Two pairs of double-sided silicon strip detectors (DSSSD) were placed before and after the reaction target to determine the energy loss. Also two scintillation fiber detectors (GFIs), composed of 480 fibers and time-of-flight wall (TFW) composed of plastic scintillator paddles, were used in combination with DSSSD detectors to identify atomic number Z and mass number A. Measured ²⁵F energy spectrum, Eγ, neutron-γ coincidences, deduced ²⁵F resonance levels. Comparison with shell model calculations. Other: 2013Va06. #### ²⁵F Levels | E(level) [†] | $J^{\pi \dagger}$ | $\Gamma_{\rm r}$ | L & | Comments | |-------------------------|-------------------|------------------------------------|------------|--| | 0.0 | $(5/2^+)$ | | | | | 1720 <i>15</i> | $(1/2^+)$ | | | | | 3090 75 | $(9/2^+)$ | | | | | 3440 20 | $(3/2^+)$ | | | | | 3830 <i>60</i> | $(3/2^+)$ | | | | | 4195 35 | $(5/2^+)$ | | | | | 4.67×10^{3} 14 | $(5/2^+)^{\#}$ | 73 keV 70 | 2 | E(level): 4659 104 in 2017Va24. | | | | | | $E_r = 389 \ 27 \ (2017Va24).$ | | 4.85×10^{3} 14 | $(1/2^{-})^{\#}$ | 51 keV 49 | 1 | E(level): 4840 104 in 2017Va24. | | | | | | E_r =571 9 from 49 keV 9 (2017Va24) + E_γ =521.5 keV 3 (in ^{24}F adopted gammas in ENSDF). In 2017Va24 E_r =570 9 using E_γ =521 keV 1 of | | | | | | 24 F from 2015Ca09. 2017Va24 measured E γ =510. | | | | | | Possible configuration: $(\pi 0p_{1/2})(\pi 0d_{5/2})^2$ (2017Va24). | | $5.83 \times 10^3 18$ | | $2.50 \times 10^3 \text{ keV } 44$ | | E(level): 5816 146 in 2017Va24. | | | | | | $E_r = 1546 \ 106 \ (2017 \text{Va} 24).$ | [†] From 2014Va02, except where otherwise noted. Spin and parity assignments are based on shell model calculations and γ placements. [‡] From 2017Va24, deduced using the resonance energy (listed in comments section) and Sn(²⁵F)=4280 keV *140* in AME2020 (2021Wa16). Values reported in 2017Va24, using Sn(²⁵F)=4270 keV *100* (2012Wa38 – AME2012), are listed in the comments. [#] From L value and shell model calculations. [@] Resonance width from 2017Va24. [&]amp; Proposed in 2017Va24 from the comparison of experimental and calculated single-particle widths. #### $C(^{26}Ne,^{25}F\gamma)$ 2014Va02,2017Va24 (continued) # γ (²⁵F) | E_{γ}^{\dagger} | ${\rm I}_{\gamma}{}^{\dagger}$ | $E_i(level)$ | \mathbf{J}_i^{π} | E_f | \mathbf{J}_f^{π} | Comments | |-----------------------------|--------------------------------|--------------|----------------------|-------|----------------------|--| | 750 30 | 12 2 | 4195 | $(5/2^+)$ | 3440 | $(3/2^+)$ | | | 1720 [#] <i>15</i> | 58 [#] 12 | 1720 | $(1/2^+)$ | 0.0 | $(5/2^+)$ | | | 1720 [#] <i>15</i> | 37 # 7 | 3440 | $(3/2^+)$ | 1720 | $(1/2^+)$ | | | 2140 [@] 30 | | 3830 | (3/2+) | 1720 | (1/2+) | E_{γ} : weaker γ from the single step fragmentation reaction in 2013Va06; absent in 2014Va02 (double-step fragmentation reaction). | | 3090 [‡] <i>75</i> | 35 7 | 3090 | $(9/2^+)$ | 0.0 | $(5/2^+)$ | | | 3440 [‡] <i>50</i> | 100 20 | 3440 | $(3/2^+)$ | 0.0 | $(5/2^+)$ | | | 3830 [‡] <i>60</i> | 89 18 | 3830 | $(3/2^+)$ | 0.0 | $(5/2^+)$ | | | 4210 [‡] <i>80</i> | 52 10 | 4195 | $(5/2^+)$ | 0.0 | $(5/2^+)$ | | [†] From 2014Va02, except where otherwise noted. For I γ , the uncertainties based on a general statement in 2014Va02 that these are below 20%. ‡ Decomposed from a broad structure of the $\gamma\text{-ray}$ spectrum (2014Va02). [#] Multiply placed with intensity suitably divided. [®] Placement of transition in the level scheme is uncertain. # $C(^{26}Ne,^{25}F\gamma)$ 2014Va02,2017Va24 ### Level Scheme $\label{eq:continuity} Intensities: Relative \ I_{\gamma}$ @ Multiply placed: intensity suitably divided Coincidence Legend