$C(^{26}Ne,^{25}F\gamma)$ 2014Va02,2017Va24

History

Type Author Citation Literature Cutoff Date
Full Evaluation M. Shamsuzzoha Basunia, Anagha Chakraborty NDS 205,1 (2025) 31-May-2025

Includes $C(^{27}Na,^{25}F\gamma),(^{28}Na,^{25}F\gamma)$. Secondary beam also contained $^{24}F,^{25}Ne,^{29}Mg$, and ^{30}Mg (2014Va02).

2014Va02: ²⁵F was produced from fragmentation of ²⁶Ne and ^{27,28}Na secondary beams, E=54 to 65 MeV/nucleon, on an "active" target of plastic scintillator (thickness=103 mg/cm²), sandwiched by two carbon foils of thickness 51 mg/cm². ²⁵F nuclei were selected by SPEG spectrometer and identified by energy loss, total energy, time-of-flight, and focal-plane position information. Secondary beams of ²⁴F, ^{25,26}Ne, ^{27,28}Na and ^{29,30}Mg with energies 54-65 MeV/nucleon were obtained from fragmentation of ³⁶S primary beam, E=77.5 MeV/nucleon, bombarding a carbon target of thickness 348 mg/cm² at GANIL. Product nuclei were selected by the α spectrometer equipped with a 130 mg/cm² Al wedge at the dispersive focal plane. γ rays were detected by an array of 74 BaF₂ crystals. Measured Eγ, Iγ, particle-γ, particle-γγ coincidences, deduced ²⁵F level scheme. Comparison with shell model, and coupled-cluster calculations. Plastic scintillator target contained hydrogen as well.

2017Va24: ²⁵F was produced via one-proton knockout reaction from ²⁶Ne secondary beams, E=456 MeV/nucleon (at entrance), on a CH₂ target (thickness=922 mg/cm²). ²⁶Ne was produced from fragmentation of ⁴⁰Ar beam, E=490 MeV/nucleon, on a ⁹Be target (thickness=4 g/cm²). Fragments were separated and selected by the fragment separator at GSI facility and identified event-by-event from energy loss and time-of-flight. γ rays were detected by 159 NaI crystals of the 4π Crystal ball detector. Two pairs of double-sided silicon strip detectors (DSSSD) were placed before and after the reaction target to determine the energy loss. Also two scintillation fiber detectors (GFIs), composed of 480 fibers and time-of-flight wall (TFW) composed of plastic scintillator paddles, were used in combination with DSSSD detectors to identify atomic number Z and mass number A. Measured ²⁵F energy spectrum, Eγ, neutron-γ coincidences, deduced ²⁵F resonance levels. Comparison with shell model calculations.

Other: 2013Va06.

²⁵F Levels

E(level) [†]	$J^{\pi \dagger}$	$\Gamma_{\rm r}$	L &	Comments
0.0	$(5/2^+)$			
1720 <i>15</i>	$(1/2^+)$			
3090 75	$(9/2^+)$			
3440 20	$(3/2^+)$			
3830 <i>60</i>	$(3/2^+)$			
4195 35	$(5/2^+)$			
4.67×10^{3} 14	$(5/2^+)^{\#}$	73 keV 70	2	E(level): 4659 104 in 2017Va24.
				$E_r = 389 \ 27 \ (2017Va24).$
4.85×10^{3} 14	$(1/2^{-})^{\#}$	51 keV 49	1	E(level): 4840 104 in 2017Va24.
				E_r =571 9 from 49 keV 9 (2017Va24) + E_γ =521.5 keV 3 (in ^{24}F adopted gammas in ENSDF). In 2017Va24 E_r =570 9 using E_γ =521 keV 1 of
				24 F from 2015Ca09. 2017Va24 measured E γ =510.
				Possible configuration: $(\pi 0p_{1/2})(\pi 0d_{5/2})^2$ (2017Va24).
$5.83 \times 10^3 18$		$2.50 \times 10^3 \text{ keV } 44$		E(level): 5816 146 in 2017Va24.
				$E_r = 1546 \ 106 \ (2017 \text{Va} 24).$

[†] From 2014Va02, except where otherwise noted. Spin and parity assignments are based on shell model calculations and γ placements.

[‡] From 2017Va24, deduced using the resonance energy (listed in comments section) and Sn(²⁵F)=4280 keV *140* in AME2020 (2021Wa16). Values reported in 2017Va24, using Sn(²⁵F)=4270 keV *100* (2012Wa38 – AME2012), are listed in the comments.

[#] From L value and shell model calculations.

[@] Resonance width from 2017Va24.

[&]amp; Proposed in 2017Va24 from the comparison of experimental and calculated single-particle widths.

$C(^{26}Ne,^{25}F\gamma)$ 2014Va02,2017Va24 (continued)

γ (²⁵F)

E_{γ}^{\dagger}	${\rm I}_{\gamma}{}^{\dagger}$	$E_i(level)$	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Comments
750 30	12 2	4195	$(5/2^+)$	3440	$(3/2^+)$	
1720 [#] <i>15</i>	58 [#] 12	1720	$(1/2^+)$	0.0	$(5/2^+)$	
1720 [#] <i>15</i>	37 # 7	3440	$(3/2^+)$	1720	$(1/2^+)$	
2140 [@] 30		3830	(3/2+)	1720	(1/2+)	E_{γ} : weaker γ from the single step fragmentation reaction in 2013Va06; absent in 2014Va02 (double-step fragmentation reaction).
3090 [‡] <i>75</i>	35 7	3090	$(9/2^+)$	0.0	$(5/2^+)$	
3440 [‡] <i>50</i>	100 20	3440	$(3/2^+)$	0.0	$(5/2^+)$	
3830 [‡] <i>60</i>	89 18	3830	$(3/2^+)$	0.0	$(5/2^+)$	
4210 [‡] <i>80</i>	52 10	4195	$(5/2^+)$	0.0	$(5/2^+)$	

[†] From 2014Va02, except where otherwise noted. For I γ , the uncertainties based on a general statement in 2014Va02 that these are below 20%. ‡ Decomposed from a broad structure of the $\gamma\text{-ray}$ spectrum (2014Va02).

[#] Multiply placed with intensity suitably divided.

[®] Placement of transition in the level scheme is uncertain.

$C(^{26}Ne,^{25}F\gamma)$ 2014Va02,2017Va24

Level Scheme

 $\label{eq:continuity} Intensities: Relative \ I_{\gamma}$ @ Multiply placed: intensity suitably divided

Coincidence

Legend

