9 Be(26 Ne, 24 F) 2011Fr13 History Type Author Literature Cutoff Date M. Shamsuzzoha Basunia, Anagha Chakraborty NDS 205,1 (2025) 31-May-2025 Full Evaluation Adapted/Edited the XUNDL dataset compiled by M. Birch and B. Singh (McMaster); September 30, 2011. Proton-removal reaction followed by a neutron emission from ²⁵F. Secondary ²⁶Ne beam, E=86 MeV/nucleon, produced from a ⁴⁰Ar primary beam, E=140 MeV/nucleon, at the National Superconducting Cyclotron Laboratory of MSU. Target=721 mg/cm² thick beryllium target. ²⁴F fragments deflected by the large-gap Sweeper Magnet were recorded by charged-particle detectors. Neutrons were detected in coincidence by the Modular Neutron Array (MoNA). Measured decay energy spectra. Deduced resonances, levels. Data for ²⁴F+n coincidences can be described with three resonances, however no detailed fits were performed for the higher-lying resonances for the possibility of the presence of several levels that cannot be resolved with the set-up resolution (2011Fr13). ## ²⁵F Levels Only the unbound neutron state observed in the present study is shown. Decay energy spectra were calculated from the difference of the invariant mass of ²⁵F and the sum masses of the neutron and ²⁴F. The mass excess values of ²⁴F and ²⁵F used were 7560 keV 72 and 11410 keV 90, respectively. | E(level) [†] | J^{π} | Γ | L | Comments | |--------------------------------------|-----------|----------|---|--| | 4.31×10 ³ <i>14</i> | 1/2- | <20 keV | _ | E_r=28 4 (2011Fr13). E(level): other: 4249 keV 116 in 2011Fr13, deduced from measured E_{res}= 28 keV 4 and measured S(n)=4221 keV 115 (2007Ju03). Assignment assumes the resonance decays to the ground state of ²⁴F. J^π: assignment based on comparison with shell model calculations. | | | | | | Γ : based on experimental resolution, authors report an upper limit for the width. | | 4.63×10^3 ? [‡] 14 | | ≈200 keV | 1 | $E_r=350?$ (2011Fr13). | | 5.48×10^3 ? [‡] 14 | | ≈800 keV | 1 | $E_r=1200 (2011Fr13).$ | [†] From E_r and Sn(25 F)=4280 keV 140 in AME2020 (2021Wa16). E_r listed in the comments. [‡] Authors stated that the resolution of the experimental setup did not allow for a detailed comparison of this resonance. Sn(25F)=4280 keV 140 in AME2020 (2021Wa16).