$^{253}{ m Lr}~lpha~{ m decay}~{ m (0.63~s)}$ 2022Hu21,2009He20,2008Ga25

Type	Author	Citation	Literature Cutoff Date	
Full Evaluation	C. D. Nesaraja	NDS 195,718 (2024)	12-Oct-2023	

Parent: 253 Lr: E=0.0; $J^{\pi}=(7/2^{-})$; $T_{1/2}=0.63$ s 5; $Q(\alpha)=8918$ 20; $\%\alpha$ decay=99 6

- 2022Hu21: ²⁵³Lr produced in the ²⁰⁵Tl(⁵⁰Ti,2n) at the ATLAS linear accelerator at Argonne National Laboratory. The ²⁵³Lr was separated in the Argonne Gas-Filled Analyzer (AGFA) and then passed through a parallel grid avalanche counter (PGAC). It was then implanted into doublesided Si strip detector (DSSD). Alphas escaping the DSSD were deposited into an array of single-sided Si strip detectors (SSSD). Measured Eα, t_{1/2} and α branching ratio.
- 2010He11: α decay from the ²⁵³Lr which was produced from the α decay of ²⁵⁷Db was measured at the UNILAC accelerator at GSI, Darmstadt. ²⁵⁷Db, the evaporated residue was separated by the velocity filter SHIP and implanted into a 16-strip Si PIPS detector. Six Si detectors were used to measure escaping α -particles from the decay of the ²⁵³Lr.
- 2009He20: 253 Lr produced in the 209 Bi(48 Ti,4n) reaction and from the α decay of 257 Db at the UNILAC accelerator at GSI Darmstadt. Evaporation residues were separated by the velocity filter SHIP and implanted into a 16-strip Si PIPS detector. A box of six Si wafers was used to measure escaping α particles. A Ge clover detector consisting of four crystals was used to measure gammas in coincidence with particles. Measured E α and half-life.
- 2008Ga25: The 257 Db isotope produced in 209 Bi(50 Ti,2n) and 208 Pb(51 V,2n) reactions at 4.7-5.1 MeV/nucleon beams of 51 V and 50 Ti provided by 88-Inch Cyclotron at LBNL. Detected α particles using silicon implantation detectors.
- 2001He35: α decay from ²⁵³Lr which was produced from the α decay of ²⁵⁷Db was measured at the UNILAC accelerator at GSI, Darmstadt. ²⁵⁷Db, the evaporated residue, was separated by the velocity filter SHIP and implanted into a 16-strip Si PIPS detector. Six Si detectors were used to measure escaping α -particles from the decay of the ²⁵³Lr. The observed α -spectra revealed the existence of an isomeric state.
- 1986He28,1985He22: 253 Lr was produced from heavy-ion fusion reaction of 50 Ti and 209 Bi. It was separated from the projectile beam by the velocity filter SHIP and identified after implantation into an array of position-sensitive surface-barrier detectors by analyzing the α -decay chains. Measured E α , $t_{1/2}$ and α branching ratio.

Other: 1999He11.

²⁴⁹Md Levels

E(level)	J^{π}	$T_{1/2}$	Comments
0.0	$(7/2^{-})$	24.8 s <i>10</i>	J^{π} , $T_{1/2}$: From Adopted Levels.
			Configuration=7/2 ⁻ [514] (2022Hu21).
127 24	$(11/2^{-})$		E(level): From 2022Hu21.
			J^{π} : From similarity with the 8420-keV line in ²⁵⁵ Lr depopulating the 7/2 ⁻ level and feeding the
			$11/2^-$ rotational state at ≈ 135 keV in 251 Md (2006Ch52).

α radiations

Εα	E(level)	Iα ^{‡#}	HF [†]	Comments
8660 20	127	4.1 14	8 7	Eα: From 2022Hu21.
8785 <i>14</i>	0.0	95.9 <i>14</i>	0.8 6	Eα: From 2022Hu21. Others: 8777 20 (2010He11), 8786 15 (2009He20), 8794 10
				(1999He11): 8800 20 (1986He28,1985He22).

[†] The nuclear radius parameter $r_0(^{249}\text{Md})=1.478\ 29$ is deduced from interpolation of radius parameters of the adjacent even-even nuclides in 2020Si16.

²⁵³Lr-Q(α): From 2021Wa16.

 $^{^{253}}$ Lr- $T_{1/2}$: From weighted average of 0.65 s 5 (2022Hu21), 0.43 s +23-11 (2022Hu21), 0.67 s 6 (2009He20) and 0.80 s +19-13 (2008Ga25). Others from the same group as 2009He20: 0.57 s +7-6 (2001He35), 0.7 s +5-2 (2010He11), 0.57 s +7-6 (1999He11). $T_{1/2}$ for 253 Lr prior to 2022 Hu21 is 0.57 s +7-6 (2013Br09).

 $^{^{253}}$ Lr-J $^{\pi}$: From Adopted Levels of 253 Lr in ENSDF database (2013Br09).

²⁵³Lr-%α decay: From %SF=1.0 6 (2017He08). %α for ²⁵³Lr prior to 2017He08 is \approx 98.7 (2013Br09).

253 Lr α decay (0.63 s) 2022Hu21,2009He20,2008Ga25 (continued)

α radiations (continued)

 $^{^{\}ddagger}$ Values quoted by 2022Hu21 have been multiplied by 1.37 to convert to intensity per 100 decays of 253 Lr (0.63 s). Relative intensities given in 2022Hu21 are: 8785α : 70 7; 8660α : 3 1. $^{\#}$ For absolute intensity per 100 decays, multiply by 0.99 6.