²⁵³No *α* decay 2012He09,2006Lo12,2004He28

History								
Туре	Author	Citation	Literature Cutoff Date					
Full Evaluation	C. D. Nesaraja	NDS 195,718 (2024)	12-Oct-2023					

Parent: ²⁵³No: E=0.0; $J^{\pi}=(9/2^{-})$; $T_{1/2}=94.0$ s *12*; $Q(\alpha)=8415$ *4*; % α decay=55 *3*

 253 No-J^{π}: From Adopted Levels of 253 No in the ENSDF (2013Br09).

²⁵³No-Q(*α*): From 2021Wa16.

²⁵³No-% α decay: From Adopted Levels of ²⁵³No in ENSDF database (2013Br09).

- 2012He09: ²⁵³No was produced in ²⁰⁷Pb(⁴⁸Ca,2n) reaction. The ⁴⁸Ca beam at E=218.4 MeV from the UNILAC accelerator at GSI bombarded a 98.9% enriched ²⁰⁷Pb target. Evaporation residues were separated using the velocity filter SHIP. They were then implanted into a position-sensitive 16-strip PIPS detector at the focal plane The PIPS detector was used to measure α decay energy of the implanted nuclei and their daughter products. It was surrounded in backward hemisphere by a box of silicon detectors to stop α particles. Gamma rays were detected using a four crystal Ge-clover detector shielded with Cu, Cd, Pb (Expt.1), and VEGA-type detector without shielding (Expt.2) FWHM=1.7 keV (Expt.1) and FWHM=2.5 keV (Expt.2) for the 279.5 keV γ -rays. Measured E γ , I γ , E $_{\alpha}$, I $_{\alpha}$, $\alpha\gamma$ coin (Δ t≤±0.4 μ s). Deduced level scheme, J^{π}, and simulated the sum energy (E $_{\alpha}$ +E_{ce}) spectra as a function of the implantation depth of ²⁵³No by GEANT4 code.
- 2004He28,2004He04,1997He29 (same group as 2012He09): ²⁵³No produced in ²⁰⁷Pb(⁴⁸Ca,2n) Residues separated by SHIP velocity filter and implanted into PIPS of GSI. Measured α , γ , $\gamma\gamma$ coin, $\alpha\gamma$ coin. Prompt and delayed spectra following α decay of ²⁵³No.
- 2011Lo06: (The same group as 2006Lo12 at FLNR, JINR. However, 2011Lo06 did the measurements with increased efficiency of their detector system and revisited the decay scheme). ²⁵³No was produced in ²⁰⁷Pb(⁴⁸Ca,2n). The residues were separated by VASSILISSA recoil separator and implanted into the GABRIELA detection system at focal plane. The detectors consisted of 48x48 strip Double-Sided-Silicon strip Detector (DSSD), 32-strip silicon detector upstream and a Ge detector. The efficiency for γ ray detection was increased to 16.4% for 100-keV photon and 3.4% at 1332 keV. Measured α , γ , $\gamma\gamma$ coin, $\alpha\gamma$ coin, conversion electrons and α (ce) coin and prompt and delayed spectra following α decay of ²⁵³No. Confirmed the work of 2006Lo12 and observed a new α -group to a (7/2⁻) state at 669 keV.
- 2006Lo12 and 2006Po10: (Same group as 2011Lo06 but used the position sensitive 16-strip silicon detector.) ²⁵³No was produced in ²⁰⁷Pb(⁴⁸Ca,2n). The residues were separated by VASSILISSA recoil separator and implanted into GABRIELA detection system at FLNR, JINR. The detectors consisted of 16-strip silicon detectors at the focal plane, 4-strip silicon detectors upstream and the Ge detector. The source was mixed with ²⁵⁴No which made it impossible to determine the absolute α decay branching ratios. Measured α , γ , $\gamma\gamma$ coin, $\alpha\gamma$ coin, conversion electrons and α (ce) coin. Prompt and delayed spectra following α decay of ²⁵³No.
- 1997He29: α decay chain 257 Rf $\rightarrow {}^{253}$ No was studied at the UNILAC accelerator at GSI, Germany. The evaporation residue (ER) from the 208 Pb(50 Ti,n) were separated in the SHIP velocity fiter and then passed through a TOF system and finally implanted into a position sensitive 16-strip silicon wafer. Measured E α , $\alpha\alpha$ correlations and excitation functions, and half-lives. There may be some indication that the 253 No α decay involves the decay of two isomers. Possibly the 8063 α are correlated with the α 's from 3.9 s 257 Rf, however no final conclusion was made.

Fm K-x	rays	(keV)	(measured	by	2012He09)
 115.3 121.1 136.4 140.6	2 2 2 2		$\begin{matrix} K_{\alpha 2}\\ K_{\alpha 1}\\ K_{\beta 1}\\ K_{\beta 2}\end{matrix}$		

²⁵³No-T_{1/2}: From weighted average of 100.0 s 55 (2018Ac08), 102 s *12* (2017Mi01), 93.6 s *12* (2009He23), 94 s +*11*-9 (2009Qi04), 95 s *10* (1967Mi03), 105 s *20* (1967Gh01).

²⁵³No *α* decay **2012He09,2006Lo12,2004He28** (continued)

²⁴⁹Fm Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	Comments
0.0#	(7/2 ⁺)	2.05 min 25	$T_{1/2}$: From Adopted Levels. Configuration=7/2[624].
58.20 [#] 17	$(9/2^+)$		
129.2 [#] 3	$(11/2^+)$		
140? 20			E(level): Calculated by the evaluator from $E\alpha$ in 1997He29. May consist of unresolved doublet as observed by 1997He29.
209.30 20	$(5/2^+)$		Configuration=5/2[622].
248 17			E(level): Calculated by the evaluator from $E\alpha$ in 1997He29.
279.80 16	$(9/2^{-})$		Configuration=9/2[734].
669.5 4	$(7/2^{-})$		Configuration=7/2[743].

[†] From least-squares fit to $E\gamma$ data except as noted.

[‡] From Adopted Levels.

Band(A): 7/2[624].

α radiations

Eα	E(level)	$I\alpha^{\#}$	HF^{\ddagger}	Comments
7619 15	669.5	0.24 6	24 7	$E\alpha$: Weighted average of 7620 15 (2012He09) and 7615 4 (2011Lo06).
				Ia: Estimated by evaluator from intensity balance. 2012He09 gives Ia = 0.25 6.
8007 4	279.80	95.2 52	1.47 12	E α : Weighted average of 8004 10 (2012He09) and 8007 4 (2011Lo06). Others: 8011 93
				(1997He29), 8003 5 (2006Lo12), 8004 5 (2004He28).
				I α : Estimated by the evaluator from 100–(Summed α branches to g.s., 209.30, and 669.5
				-keV levels). 2012He09 gives I α = 95.8 1.
8038 17	248			$E\alpha$: From 1997He29.
8078 10	209.30	3.9 5	62 9	Eα: Weighted average of 8075 <i>15</i> (2012He09) and 8080 <i>10</i> (2011Lo06). Others: 8063 <i>74</i> (1997He29), 8070 <i>10</i> (2006Lo12).
				Ia: Estimated by evaluator from intensity balance. 2012He09 gives Ia = 4.2 6.
8144 20	140?			$E\alpha$: Observed by 1997He29 who noted that it may consist of an unresolved doublet.
8150 [†] 20	129.2			E <i>α</i> : From 2006Lo12.
8220 [†] 20	58.20			E <i>α</i> : From 2006Lo12.
8280 [†] 20	0.0			E <i>α</i> : From 2006Lo12.

[†] Broad distribution of alpha particles was observed by 2012He09. The shape analysis of the measured α spectra was compared to GEANT simulations that lead to evidence for weak α decay branches of ²⁵³No into g.s. of ²⁴⁹Fm or the ground-state rotational band. In the simulations, by GEANT4 code, ($E_{\alpha}+E_{ce}$) and a total of 0.7% α decay branch to the g.s. rotational band were considered.

[±] The nuclear radius parameter $r_0(^{249}\text{Fm})=1.4730\ 54$ is deduced from interpolation (or unweighted average) of radius parameters of the adjacent even-even nuclides.

[#] For absolute intensity per 100 decays, multiply by 0.55 3.

$\gamma(^{249}\text{Fm})$

Iy normalization: From I(γ +ce)=99.3 for all gammas from 209, 279 and 669 levels, allowing for 0.7% relative α feeding to g.s. or ground-state band. It is considered approximate due to unplaced 75.0 γ and other uncertain features of the decay scheme.

			²⁵³	No <i>a</i> deca	ay 201	2He09,200)6Lo12,2004H	le28 (continued)
					γ	(²⁴⁹ Fm) (c	continued)	
Eγ	$I_{\gamma}^{\#}$	E _i (level)	J_i^π	E_f	J_f^π	Mult. [†]	α^{\ddagger}	Comments
58.3 2	1.3 3	58.20	(9/2+)	0.0	(7/2 ⁺)	(M1)	50.6 9	α(L)=37.8 7; α(M)=9.36 16 α(N)=2.62 5; α(O)=0.691 12; α(P)=0.1342 23; α(Q)=0.00758 13 E _γ ,I _γ : From 2012He09. E(58γ) was also seen in 2011Lo06 (shown in Fig.4 in 2011Lo06). Mult.: From 2012He09 who notes that for M1 transition, the expected I(γ+ce)(58.3γ)/I(γ+ce)(221.5γ)=1. The experimental ratio is 0.73 25 for M1, 4.1 15 for E2, 0.022 10 for E1; thus M1 (or M1 with small E2 admixture) for 58.3γ is most probable. It is noted by the evaluator that if 58.3γ is pure M1, Iγ should be 2.1, deduced from γ intensity balance at 58.2 level: I(γ+ce)(58.3γ)=I(γ+ce)(221.5γ)=109.2 units. If Iγ=1.3 3 is correct, then 58.3γ
(71) *75.0.2	133	129.2	(11/2 ⁺)	58.20	(9/2+)			may be M1+E2 with $\delta \approx 0.35$. E_{γ} : Expected by 2006Lo12 based on the 150 γ in coincident with $\approx 55^{-}$ and ≈ 70 -keV electrons and the presence of a structure at 100 keV in the electron single spectrum. E_{\pm} : 75 χ in coincidence with α events
129.2.4	1.0 2	129.2	$(11/2^+)$	0.0	$(7/2^+)$	E2	8.19.76	α_{γ} . 75 y in concluence with α events ranging from 8050-8100 keV. $\alpha(L) = 5.88$ 12: $\alpha(M) = 1.690.34$
129.2 1	1.0 2	12).2	(11/2)	0.0	(12)		0.19 10	$\begin{array}{l} \alpha(\text{N})=0.481 \ 10; \ \alpha(\text{O})=0.1216 \ 24; \\ \alpha(\text{P})=0.0195 \ 4; \ \alpha(\text{Q})=9.24\times10^{-5} \ 17 \\ \text{E}_{\gamma}, \text{I}_{\gamma}: \text{ From 2012He09.} \\ \text{Mult.: From } \alpha(\text{LMN}+)\exp=4.0 \ 18 \\ (2006L \ 012). \end{array}$
150.6 <i>3</i>	18 <i>I</i>	279.80	(9/2-)	129.2	(11/2 ⁺)	E1	0.2151 32	$\alpha(K)=0.1594\ 23;\ \alpha(L)=0.0416\ 6;\ \alpha(M)=0.01035\ 15$ $\alpha(N)=0.00287\ 4;\ \alpha(O)=0.000734\ 11;\ \alpha(P)=0.0001266\ 19;\ \alpha(Q)=4.54\times10^{-6}\ 7$ $E_{\gamma}:$ weighted average of 150.4 2 (2012He09) and 151.2 4 (2011Lo06). $I_{\gamma}:$ From 2012He09. Mult.: From $\alpha(LMN+)\exp=0.11\ 3$ (2006Lo12), $\alpha(K)\exp<0.98$ (2004He28), $\alpha(L)\exp<0.3$ (2004He28), $\alpha(LMN+)\exp=0.11\ 2$ (2011Lo06).
209.3 2	1.1 <i>I</i>	209.30	(5/2+)	0.0	(7/2+)	M1	5.61 8	$\begin{aligned} \alpha(L)(N+\gamma)(x_P-0.112) & (2011L000), \\ \alpha(K) &= 4.35 6; \ \alpha(L) &= 0.945 13; \\ \alpha(M) &= 0.2335 33 \\ \alpha(N) &= 0.0652 9; \ \alpha(O) &= 0.01722 25; \\ \alpha(P) &= 0.00334 5; \ \alpha(Q) &= 0.0001866 27 \\ E_{\gamma}: weighted average of 209.3 2 \\ (2012He09) and 209.5 5 (2011L006), \\ I_{\gamma}: From 2012He09, \\ Mult.: From \ \alpha(LMN+)exp &= 2.8 22 \\ (2006Lo12), \ \alpha(K)exp &= 4.4 12 \\ (2012He09), \ \alpha(K)exp &= 4.9 19 \\ (2012He09), \ \alpha(LMN+)exp &= 3.42 87 \\ (2011L006). \end{aligned}$
221.7 2	100	279.80	(9/2 ⁻)	58.20	$(9/2^+)$	E1	0.0916 13	$\alpha(K)=0.0698 \ 10; \ \alpha(L)=0.01631 \ 23;$

Continued on next page (footnotes at end of table)

			253]	No α decay	2012He0	9,2006Lo12,20	04He28 (continued)
					γ (²⁴⁹ F	m) (continued)	
Eγ	$I_{\gamma}^{\#}$	E_i (level)	\mathbf{J}_i^π	$\underline{\mathrm{E}}_{f}$ \mathbf{J}_{f}^{π}	Mult. [†]	α^{\ddagger}	Comments
279.7 2	44 <i>I</i>	279.80	(9/2-)	0.0 (7/2 ⁺)	E1	0.0556 8	$\begin{array}{c} \alpha(\mathrm{M})=0.00404\ 6\\ \alpha(\mathrm{N})=0.001119\ 16;\ \alpha(\mathrm{O})=0.000289\ 4;\\ \alpha(\mathrm{P})=5.14\times10^{-5}\ 7;\ \alpha(\mathrm{Q})=2.054\times10^{-6}\ 29\\ \mathrm{E}_{\gamma}:\ \text{weighted average of } 221.5\ 2\ (2012\mathrm{He09})\ \text{and}\\ 221.8\ 2\ (2011\mathrm{Lo06}).\\ \mathrm{I}_{\gamma}:\ \mathrm{From\ } 2012\mathrm{He09}.\\ \mathrm{Mult:\ From\ } \alpha(\mathrm{LMN+})\mathrm{exp}=0.04\ 1\ (2006\mathrm{Lo12}),\\ \alpha(\mathrm{K})\mathrm{exp}<0.17\ (2004\mathrm{He28}),\ \alpha(\mathrm{L})\mathrm{exp}<0.05\ (2004\mathrm{He28}),\ \alpha(\mathrm{LMN+})\mathrm{exp}=0.023\ 4\ (2011\mathrm{Lo06}).\\ \alpha(\mathrm{K})=0.0429\ 6;\ \alpha(\mathrm{L})=0.00953\ 13;\\ \alpha(\mathrm{M})=0.002349\ 33\ \alpha(\mathrm{N})=0.000652\ 9;\ \alpha(\mathrm{O})=0.0001687\ 24;\\ \alpha(\mathrm{P})=3.05\times10^{-5}\ 4;\ \alpha(\mathrm{Q})=1.294\times10^{-6}\ 18\ \mathrm{E}_{\gamma}:\ \mathrm{weighted\ average\ of\ } 279.5\ 2\ (2012\mathrm{He09})\ \mathrm{and\ } 279.8\ 2\ (2011\mathrm{Lo06}). \end{array}$
669.5 <i>4</i>	0.43 11	669.5	(7/2-)	0.0 (7/2+)	[E1]	0.01023 14	$I_{\gamma}: \text{ From 2012He09.}$ Mult.: α(LMN+)exp=0.08 2 (2006Lo12), α(K)exp=0.12 3 (2006Lo12), α(K)exp<0.35 (2004He28), α(L)exp<0.1 (2004He28), α(K)exp=0.145 22 (2011Lo06), α(LMN+)=0.076 12 (2011Lo06). α(K)=0.00814 11; α(L)=0.001571 22; α(M)=0.000382 5 α(N)=0.0001059 15; α(O)=2.77×10 ⁻⁵ 4; α(P)=5.22×10 ⁻⁶ 7; α(Q)=2.64×10 ⁻⁷ 4 E _γ : From 2012He09.

[†] From the experimental internal conversion data. The numerical values of the conversion coefficients data from 2006Lo12 listed in the comments were read from Figure 6 of 2006Lo12.
[‡] Additional information 1.
[#] For absolute intensity per 100 decays, multiply by 0.30.
^x γ ray not placed in level scheme.

²⁵³No α decay 2012He09,2006Lo12,2004He28

 $^{249}_{100}$ Fm $_{149}$

2⁵³No α decay 2012He09,2006Lo12,2004He28</sup>

