²⁵³Cf α decay 1968Be21

History							
Туре	Author	Citation	Literature Cutoff Date				
Full Evaluation	C. D. Nesaraja	NDS 195,718 (2024)	12-Oct-2023				

Parent: ²⁵³Cf: E=0.0; $J^{\pi}=(7/2^+)$; $T_{1/2}=17.81$ d 8; $Q(\alpha)=6126$ 4; % α decay=0.31 4

 253 Cf-Q(α): From 2021Wa16.

 253 Cf-J^{π}, $T_{1/2}$: From Adopted Levels of 253 Cf (2013Br09).

²⁵³Cf-% α decay: From 1966Rg01.

1968Be21: ²⁵³Cf was produced from thermal neutron induced reaction of ²⁵²Cf at the High Flux Isotope Reactor (HFIR) at the Oak Ridge National Laboratory. It was then followed by chemical separation. Alpha-particle energy spectra were measured using a silicon-gold surface barrier detector. Collimators between the source and the detector were used to minimize alpha-particle and fission-fragment scattering from the detector edges. FWHM≈15 keV for the 6.119 MeV α particle decay ²⁵²Cf. Measured E α and I α .

1966Rg01: Alpha decay was studied from decay of 253 Cf from samples of the Par and Barbel thermonuclear explosions. The samples were chemically treated and purified. α spectra were measured with gold-silicon surface-barrier detectors. Measured E α .

 $J(^{253}Cf \text{ g.s.})=(7/2^+)$, therefore, the favored α branch (HF=1.25 18) is unlikely to go to the ²⁴⁹Cm g.s with J=1/2⁽⁺⁾. It most probably feeds the 50-keV (7/2⁺) state.

²⁴⁹Cm Levels

E(level) [†]	\mathbf{J}^{π}	T _{1/2}	Comments
0.0	$1/2^{+}$	64.15 min 3	$T_{1/2}$: from Adopted Levels.
50 6	$(7/2^+)$	23 µs	$T_{1/2}$: From delayed coin (1966As12). It is noted that evaluator is unable to verify this value as this private communication is not available.
111 7	$(9/2^+)$		

[†] From E α and Q α (²⁵³Cf).

α radiations

$E\alpha^{\ddagger}$	E(level)	$I\alpha^{\#@}$	HF^{\dagger}
5920 5	111	5.3 <i>19</i>	11 6
5980 4	50	94.7 9	1.3 4

[†] The nuclear radius parameter $r_0(^{249}\text{Cm})=1.509\ 12$ is deduced from interpolation of radius parameters of the adjacent even-even nuclides in 2020Si16.

[‡] Recommended value from 1991Ry01, based on adjusted values from 1968Be21, 1966Rg01.

[#] Recommended value from 1991Ry01, based on measurements of 1968Be21 and 1966Rg01.

[@] For absolute intensity per 100 decays, multiply by 0.0031 4.