248 Cm(18 O, 16 On γ) 2008Is05

History								
Туре	Author	Citation	Literature Cutoff Date					
Full Evaluation	C. D. Nesaraja	NDS 195,718 (2024)	12-Oct-2023					

2008Is05: $E(^{13}C)=162$ MeV from the JAEA-Tokai tandem accelerator bombarded a 0.8 mg/cm² thick ²⁴⁸Cm target to study the the one-neutron stripping reaction. Measured E γ , I γ , $\gamma\gamma$, $\gamma(\theta)$, particles, and (particle) γ coin, using six Ge detectors for γ rays and four sets of Si Δ E-E detectors for particles. Comparison with deformed shell model predictions.

²⁴⁹Cm Levels

E(level) [†]	J^{π}	Comments
0.0 [#]	$1/2^{+}$	
26.2 [‡] 4	$3/2^{+}$	
48.203 [#] 9	$5/2^{+}$	
48.766 ^{&} 15	$7/2^{+}$	Additional information 1.
109.57 ^{&} 10	9/2+	
110.153 [‡] <i>10</i>	$7/2^{+}$	Additional information 2.
148.40 [#] 10	9/2+	Additional information 3.
182.84 ^{&} 16	$11/2^{+}$	
244.75 [‡] 10	$11/2^{+}$	
268.8 ^{&} 3	$13/2^{+}$	
299.00 [#] 10	$13/2^{+}$	
375.30 ^a 14	$11/2^{-}$	
429.75 [‡] 14	$15/2^+$	
498.60 [#] 22	$17/2^{+}$	
663.45 [‡] 17	19/2+	
699.10 [@] 14	$15/2^{-}$	
868.30 [@] 25	19/2-	

[†] From least-squares fit to $E\gamma$ data by the evaluator. Energies of 48.766-keV, 110.153-keV, and 148.40-keV levels kept fixed in the fitting procedure.

- [‡] Band(A): $1/2[620], \alpha = -1/2.$
- [#] Band(a): 1/2[620], $\alpha = +1/2$.
- [@] Band(B): 1/2[750].
- [&] Band(C): 7/2[613].
- ^a Band(D): 11/2[725].

E_{γ}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult.#	α [@]	Comments
60.8 <i>1</i> 73.6 <i>3</i>		109.57 182.84	9/2 ⁺ 11/2 ⁺	48.766 109.57	7/2 ⁺ 9/2 ⁺	(M1)	16.89 <i>31</i>	α (L)=12.68 23; α (M)=3.10 6 α (N)=0.853 16; α (O)=0.217 4; α (P)=0.0428 8; α (Q)=0.00308 6
86.0 2 134.6 <i>1</i>	14.6 <i>19</i>	268.8 244.75	13/2 ⁺ 11/2 ⁺	182.84 110.153	11/2 ⁺ 7/2 ⁺	(E2)	4.94 7	α (K)=0.1530 22; α (L)=3.46 5; α (M)=0.978 14 α (N)=0.272 4; α (O)=0.0660 10; α (P)=0.01106 16; α (Q)=6.08×10 ⁻⁵ 9
150.6 <i>1</i>	12.6 22	299.00	13/2+	148.40	9/2+	(E2)	3.07 4	I(γ +ce)= 88 11. α (K)=0.1733 24; α (L)=2.094 30; α (M)=0.590 8

 γ ⁽²⁴⁹Cm)

Continued on next page (footnotes at end of table)

²⁴⁸Cm(¹⁸O,¹⁶Onγ) **2008Is05** (continued)

γ (²⁴⁹Cm) (continued)

E_{γ}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult.#	α [@]	Comments
185.0 <i>1</i>	23.3 22	429.75	15/2+	244.75	11/2+	E2	1.331 <i>19</i>	$\alpha(N)=0.1642\ 23;\ \alpha(O)=0.0399\ 6;\alpha(P)=0.00670\ 10;\ \alpha(Q)=4.20\times10^{-5}\ 6I(\gamma+ce)=52\ 9.\alpha(K)=0.1585\ 22;\ \alpha(L)=0.849\ 12;\ \alpha(M)=0.2384\ 34\alpha(N)=0.0663\ 9;\ \alpha(O)=0.01612\ 23;\alpha(P)=0\ 00273\ 4;\ \alpha(O)=2\ 228\times10^{-5}\ 31$
192.5 <i>1</i> 199.6 2	38 [‡] 4 22.4 25	375.30 498.60	11/2 ⁻ 17/2 ⁺	182.84 299.00	11/2 ⁺ 13/2 ⁺	(E2)	0.992 14	$I(\gamma+ce) = 55 5.$ $I(\gamma+ce) = 43 4.$ $\alpha(K) = 0.1461 21; \ \alpha(L) = 0.613 9; \ \alpha(M) = 0.1718$ 25
233.7 1	22.4 26	663.45	19/2+	429.75	15/2+	(E2)	0.554 8	$\alpha(N)=0.0478\ 7;\ \alpha(O)=0.01162\ 17;$ $\alpha(P)=0.001978\ 29;\ \alpha(Q)=1.788\times10^{-5}\ 26$ $I(\gamma+ce)=45\ 5.$ $\alpha(K)=0.1183\ 17;\ \alpha(L)=0.316\ 4;\ \alpha(M)=0.0882$ 12 $\alpha(N)=0.02452\ 25;\ \alpha(Q)=0.00508\ 8;$
265.7 1	86 <i>5</i>	375.30	11/2-	109.57	9/2+	E1	0.0566 8	$\begin{aligned} \alpha(N) = 0.02432 \ 35, \ \alpha(O) = 0.00598 \ 8, \\ \alpha(P) = 0.001025 \ 14; \ \alpha(Q) = 1.156 \times 10^{-5} \ 16 \\ I(\gamma + ce) = 35 \ 4. \\ \alpha(K) = 0.0443 \ 6; \ \alpha(L) = 0.00928 \ 13; \\ \alpha(M) = 0.002267 \ 32 \\ \alpha(N) = 0.000618 \ 9; \ \alpha(O) = 0.0001543 \ 22; \end{aligned}$
369.7 1	20.4 29	868.30	19/2-	498.60	17/2+	(E1)	0.0281 4	$\alpha(P)=2.86\times10^{-5} 4; \ \alpha(Q)=1.561\times10^{-6} 22$ I(\(\gamma\)+ce)= 91 5. $\alpha(K)=0.02220 \ 31; \ \alpha(L)=0.00441 \ 6; \alpha(M)=0.001071 \ 15$ $\alpha(N)=0.000292 \ 4; \ \alpha(O)=7.33\times10^{-5} \ 10;$
400.1 <i>I</i>	14.6 20	699.10	15/2-	299.00	13/2+	(E1)	0.02387 <i>33</i>	$\alpha(P)=1.380\times10^{-5} \ 19; \ \alpha(Q)=8.10\times10^{-7} \ 11$ I(γ +ce)= 21 3. $\alpha(K)=0.01894 \ 27; \ \alpha(L)=0.00371 \ 5;$ $\alpha(M)=0.000901 \ 13$ $\alpha(N)=0.0002459 \ 34; \ \alpha(O)=6.17\times10^{-5} \ 9;$ $\alpha(P)=1.167\times10^{-5} \ 16; \ \alpha(Q)=6.96\times10^{-7} \ 10$ I(γ +ce)= 15 2.

[†] In units of μ b deduced by the evaluator from α and I(γ +ce). I(γ +ce) given in comments in units of μ b were obtained by 2008Is05 from their measured I γ 's and theoretical conversion coefficients taken from Rosel *et.al* (1978Ro21).

[‡] Combined intensity for 192.5+193.5 γ rays. 2008Is05 give the total intensity only with 192.5 γ which may imply that the intensity of the 193.5 γ is weak.

[#] From 248 Cm(16 O, 15 On γ) measurement by the same group (2008Is05).

[@] Additional information 4.

²⁴⁸Cm(¹⁸O,¹⁶Onγ) 2008Is05

²⁴⁹₉₆Cm₁₅₃

²⁴⁸Cm(¹⁸O,¹⁶Onγ) 2008Is05

²⁴⁹₉₆Cm₁₅₃