²⁴⁹Es ε + β ⁺ decay 1976Ah07

		History	
Туре	Author	Čitation	Literature Cutoff Date
Full Evaluation	C. D. Nesaraja	NDS 195,718 (2024)	12-Oct-2023

Parent: ²⁴⁹Es: E=0; $J^{\pi}=7/2^+$; $T_{1/2}=102.2 \text{ min } 6$; $Q(\varepsilon)=1450 \text{ syst}$; $\%\varepsilon+\%\beta^+$ decay=99.43 8

 249 Es-T_{1/2}: From Adopted Levels. Note that 1976Ah07 measured t_{1/2}= 102.3 min 6 for 249 Es from decay of the 379.5 γ that was measured with a Ge(Li) detector.

²⁴⁹Es-Q(ε): 1450 30 (2021Wa16).

1976Ah07: ²⁴⁹Es was produced by bombarding 18 MeV deuterons on ²⁴⁹Cf target at the Argonne 60 inch cyclotron. The irradiated target was mass separated. Low-energy gammas from the decay of ²⁴⁹Es were measured with a planar Ge(Li) with FWHM=600 eV at $E\gamma$ =100 keV, high-energy gammas were measured with a coaxial Ge(Li) detector, and conversion electrons were measured with a Si(Li) detector with FWHM=1.0 keV at E(electron)=100 keV and FWHM=1.6 keV at E(electron)=600 keV. Measured $E\gamma$, I γ , conversion electron spectra, E(ce), I(ce), α , T_{1/2}(²⁴⁹Es), branching ratio. Deduced level scheme and multipolarity.

1970Ah01: ²⁴⁹Es was produced from ²⁴⁹Bk(α ,4n) reaction with E(⁴He)= 45 MeV from the Argonne cyclotron. The target was purified prior to irradiation to remove ²⁴⁹Cf that formed from the decay of ²⁴⁹Bk. Chemical separation was done after the irradiation to remove fission products. Gamma rays were measured with Ge(Li) and NaI(Tl) detectors. Measured $\gamma\gamma$ coincidence and Cf(Xrays).

249Cf Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} #	Comments
0@	9/2-	351 y 2	
62.49 [@] 4	11/2-		
136.22 [@] 35	13/2-		
144.96 <mark>&</mark> 5	5/2+	45 μs 5	
187.94 <mark>&</mark> 6	7/2+		
243.07 ^{&} 6	9/2+		
379.52 ^a 5	7/2+		
437.56 ^{<i>a</i>} 5	9/2+		
442.98 <mark>6</mark> 6	7/2+		
500.67? ^b 31	$(9/2^+)$		
813.20 ^C 8	$(5/2)^{-}$		
852.19 ^C 7	$(7/2)^{-}$		
902.52 ^C 17	$(9/2^{-})$		
1007.97 6	$(9/2^+)$		Configuration=9/2[615] (1976Ah07).
1199.8 4	$(7/2^{-}, 9/2)$		
1218.50 10	$(7/2)^{-}$		E(level): $K^{\pi} = 7/2^{-}$. Three-quasiparticle state. Configuration= $((\pi 7/2[633])(\pi 3/2[521])(\nu 3/2[622]))$ (1976Ah07).
1238.05 17	$(5/2^{-}, 7/2, 9/2^{+})$		
1267.7 4	(9/2 ⁻)		
1304.30 30			

 † From least-squares fit to $E\gamma$ data by the evaluator.

[‡] From Adopted Levels. Band assignments are from 1976Ah07.

[#] From Adopted Levels.

[@] Band(A): 9/2⁻[734] Band.

[&] Band(B): 5/2⁺[622] Band.

²⁴⁹Es $\varepsilon + \beta^+$ decay 1976Ah07 (continued)

²⁴⁹Cf Levels (continued)

^a Band(C): 7/2⁺[624] Band.

^b Band(D): 7/2⁺[613] Band.

^c Band(E): $K^{\pi} = 5/2^{-}$ Gamma vibrational band built on 9/2[734].

ε, β^+	radiations

E(decay)	E(level)	$\mathrm{I}\beta^+$	$\mathrm{I}\varepsilon^{\ddagger}$	Log <i>ft</i>	$I(\varepsilon + \beta^+)^{\dagger\ddagger}$	Comments
(146 syst)	1304.30		0.038 4	6.9 3	0.038 4	εK=0.02 17; εL=0.66 10; εM+=0.32 7
(182 <i>syst</i>)	1267.7		0.037 7	7.2 3	0.037 7	εK=0.22 17; εL=0.54 11; εM+=0.24 7
(212 <i>syst</i>)	1238.05		0.054 7	7.25 24	0.054 7	εK=0.35 14; εL=0.45 9; εM+=0.20 5
(232 syst)	1218.50		1.56 10	5.92 21	1.56 10	εK=0.41 11; εL=0.41 7; εM+=0.18 4
(250 syst)	1199.8		≈0.026	≈7.8	≈0.026	εK=0.46 8; εL=0.38 6; εM+=0.16 3
(442 syst)	1007.97		1.70 10	6.70 9	1.70 10	εK=0.643 14; εL=0.257 10; εM+=0.100 5
(548 syst)	902.52		0.18 6	7.91 16	0.18 6	εK=0.676 8; εL=0.234 6; εM+=0.0895 24
(598 syst)	852.19		2.15 12	6.93 6	2.15 12	εK=0.687 6; εL=0.227 4; εM+=0.0862 19
(637 syst)	813.20		10.0 6	6.33 6	10.0 6	εK=0.693 5; εL=0.223 4; εM+=0.0841 16
(1007 <i>syst</i>)	442.98		3.47 29	7.25 5	3.47 29	εK=0.7273 17; εL=0.1992 12; εM+=0.0735 6
(1012 syst)	437.56		8.3 10	6.87 6	8.3 10	εK=0.7276 17; εL=0.1990 12; εM+=0.0734 5
(1071 syst)	379.52		39.2 28	6.25 5	39.2 28	εK=0.7304 15; εL=0.1970 10; εM+=0.0726 5
(1207 syst)	243.07		0.6 7	8.2 5	0.6 7	εK=0.7359 11; εL=0.1932 8; εM+=0.0709 4
(1305 syst)	144.96		3.6 25	7.5 3	3.6 25	εK=0.7391 9; εL=0.1910 7; εM+=0.0699 3
(1388 syst)	62.49		1.1 7	8.9 ¹ <i>u</i> 3	1.1 7	εK=0.7038 19; εL=0.2152 13; εM+=0.0810 6
(1450 syst)	0	0.0025 12	26 9	6.72 16	26 9	av E β =222 14; ε K=0.7428 7; ε L=0.1884 5;
						$\varepsilon M += 0.06871 \ 23$
						Ic: Calculated by evaluator from measured I(K x ray) -

I ε : Calculated by evaluator from measured I(K x ray) – [I(K x ray (from ce(K))) + I(K x ray (from ε to excited levels))]. The observed K x ray intensities were converted into K shell vacancies with K-shell fluorescence ω = 0.973 4 (1979Ah01). With I(K x ray)=81.8 50 (1976Ah07) from the adopted decay scheme; I(K x ray (from ce(K)))=3.88 23; I(K x ray (from ε to excited levels))=51.1 79; ω = 0.973 4 (1979Ah01); I((ε to g.s.))=26 9 is deduced.

[†] Deduced by evaluator from intensity balance at each level.

[‡] Absolute intensity per 100 decays.

						²⁴⁹ Es	$\varepsilon + \beta^+$ decay 19	076Ah07 (contin	ued)	
							γ ⁽²⁴⁹	Cf)		
Iγ normaliz	ation: Fro	om (100-I $arepsilon$ to g	g.s.)/(ΣΙ(γ	∕+ce)to g.	s.).					
The C E(x ray 109.6 114.8 129.3 +	f x-ray y) 133.4	intensities I(x ray) 0.67 7 0.98 1 0.55 6	$\begin{array}{c} \textbf{(1970A}\\ \textbf{Cf x}\\ \textbf{K}_{\alpha 2}\\ \textbf{K}_{\alpha 1}\\ \textbf{K}_{\beta} + \textbf{K}_{\beta} \end{array}$	h01): ray 2		-				
The C E(x ra 109.83 115.04 128.61 129.84 133.59 134.73	f x-ray y) 5 5 5 5 5 5 5 5	intensities I(x ray) 24.4 15 38.0 23 4.8 3 9.5 6 3.9 3 1.23 9	$\begin{array}{c} \textbf{(1976A)}\\ \textbf{Cf x}\\ \textbf{K}_{\alpha 2}\\ \textbf{K}_{\alpha 1}\\ \textbf{K}_{\beta 3}\\ \textbf{K}_{\beta 1}\\ \textbf{K}_{\beta 2}+\\ \textbf{K}_{0 2,3}\end{array}$	h 07): ray K _{β4}		_				
Ε _γ	 Ι _γ @	E_i (level)	J_i^{π}	E _f	J_f^{π}	- Mult. [†]	δ^{\dagger}	a#	$I_{(\gamma+ce)}^{(a)}$	Comments
43.00 5	0.033 7	187.94	7/2+	144.96	5/2+	M1+E2	0.27 +8-10	1.8×10 ² 5		$\alpha(L)=1.30 \times 10^2 \ 34; \ \alpha(M)=34 \ 10$ $\alpha(N)=9.6 \ 27; \ \alpha(O)=2.4 \ 7; \ \alpha(P)=0.43 \ 10;$ $\alpha(Q)=0.0147 \ 4$ Mult., δ : From $\alpha(N+)\exp=9.6 \ 27.$ $\alpha(L)=41 \ 10; \ \alpha(N+)=10 \ 2 \ 30$
58.01 5	0.032 7	437.56	9/2 ⁺	379.52	7/2+	M1+E2	0.14 12	95 15		$\alpha(L)=41.70, \ \alpha(M)=10.2.50$ $\alpha(N)=2.8.8; \ \alpha(O)=0.73.21; \ \alpha(P)=0.138.31;$ $\alpha(Q)=0.00724.25$ Mult., δ : From $\alpha(L12)\exp=32.10, \alpha(M)\exp=11.5.33.$ $\alpha(L)=69.10; \ \alpha(M)=18.8.31$ $\alpha(N)=5.3.9; \ \alpha(O)=1.32.21; \ \alpha(P)=0.224.32;$ $\alpha(Q)=0.00534.28$ Mult., δ : From $\alpha(L1)\exp=23.2.59, \ \alpha(L2)\exp=32.2$
62.47 5	0.127 1	0 62.49	11/2-	0	9/2-	M1+E2	0.291 +29-31	46.9 26		77, α (L3)exp=16.7 33, α (M1+M2)exp=15.0 40, α (M3+M4+M5)exp=6.0 15. α (L)=34.6 19; α (M)=9.0 5 α (N)=2.50 15; α (O)=0.64 4; α (P)=0.115 6; α (Q)=0.00479 9
(63.1)		500.67?	(9/2+)	437.56	9/2+	[M1,E2]		1.1×10 ² 8	0.050 15	Mult., σ : From $\alpha(L1)\exp=20.9$ 39, $\alpha(L3)\exp=4.8$ 9. ce(L)/(γ +ce)=0.7 4; ce(M)/(γ +ce)=0.20 18

ω

 $^{249}_{98}\mathrm{Cf}_{151}\text{-}3$

	²⁴⁹ Es ε + β ⁺ decay 1976Ah07 (continued)												
	$\gamma(^{249}Cf)$ (continued)												
Eγ	$I_{\gamma}^{@}$	E _i (level)	J_i^π	E_f	\mathbf{J}_f^{π}	Mult. [†]	δ^{\dagger}	α [#]	$I_{(\gamma+ce)}^{@}$	Comments			
63.45 5	0.058 7	442.98	7/2+	379.52	7/2+	M1		32.0 5		$\begin{aligned} & \operatorname{ce}(\mathrm{N})/(\gamma+\mathrm{ce})=0.06\ 6;\ \operatorname{ce}(\mathrm{O})/(\gamma+\mathrm{ce})=0.014\ 14;\\ & \operatorname{ce}(\mathrm{P})/(\gamma+\mathrm{ce})=0.0023\ 22;\ \operatorname{ce}(\mathrm{Q})/(\gamma+\mathrm{ce})=2.7\times10^{-5}\\ & 25\\ & \alpha(\mathrm{L})=8.\mathrm{E1}\ 6;\ \alpha(\mathrm{M})=23\ 17\\ & \alpha(\mathrm{N})=6\ 5;\ \alpha(\mathrm{O})=1.6\ 12;\ \alpha(\mathrm{P})=0.26\ 18;\\ & \alpha(\mathrm{Q})=0.0031\ 19\\ & \alpha(\mathrm{L})=23.99\ 34;\ \alpha(\mathrm{M})=5.91\ 8 \end{aligned}$			
										$\alpha(N)=1.637\ 23;\ \alpha(O)=0.425\ 6;\ \alpha(P)=0.0822\ 12;$ $\alpha(Q)=0.00486\ 7$ Mult : From $\alpha(L) \exp -22.8\ 40$			
(73.7)		136.22	13/2-	62.49	11/2-	[M1,E2]		6.×10 ¹ 4	<0.1	ce(L)/(γ +ce)=0.71 34; ce(M)/(γ +ce)=0.20 16 ce(N)/(γ +ce)=0.06 5; ce(O)/(γ +ce)=0.014 12; ce(P)/(γ +ce)=0.0023 20; ce(Q)/(γ +ce)=3.3×10 ⁻⁵ 30			
(136.2)		136.22	13/2-	0	9/2-	[E2]		5.53 8	<0.1	$\alpha(L)=41\ 26;\ \alpha(M)=11\ 8$ $\alpha(N)=3.2\ 22;\ \alpha(O)=0.8\ 5;\ \alpha(P)=0.13\ 8;$ $\alpha(Q)=0.0019\ 13$ $ce(K)/(\gamma+ce)=0.01806\ 33;\ ce(L)/(\gamma+ce)=0.597\ 6;$			
										ce(M)/(γ +ce)=0.1700 28 ce(N)/(γ +ce)=0.0478 9; ce(O)/(γ +ce)=0.01186 22; ce(P)/(γ +ce)=0.001914 35; ce(Q)/(γ +ce)=9.40×10 ⁻⁶ 17 α (K)=0.1179 17; α (L)=3.90 5; α (M)=1.110 16 α (N)=0.312 4; α (O)=0.0774 11; α (P)=0.01250 17;			
136.37 8	0.065 15	379.52	7/2+	243.07	9/2+	[M1]		15.50 22		$\alpha(Q)=6.14\times10^{-5} \ 9$ $\alpha(K)=12.01 \ 17; \ \alpha(L)=2.61 \ 4; \ \alpha(M)=0.641 \ 9$ $\alpha(N)=0.1777 \ 25; \ \alpha(O)=0.0461 \ 7; \ \alpha(P)=0.00891 \ 13; \ \alpha(Q)=0.000525 \ 7$			
144.99 6	0.18 2	144.96	5/2+	0	9/2-	M2+E3 [‡]	0.42 +11-12	64.9 11		$\alpha(K)=30.7\ 25;\ \alpha(L)=24.5\ 21;\ \alpha(M)=7.1\ 7$ $\alpha(N)=2.01\ 21;\ \alpha(O)=0.51\ 5;\ \alpha(P)=0.091\ 7;$ $\alpha(Q)=0.00350\ 22$ Mult δ : From $\alpha(L)\exp=13\ 0.26,\ \alpha(L)\exp=6\ 1.12$			
191.6 <i>1</i>	0.40 3	379.52	7/2+	187.94	7/2+	M1+E2	0.53 +18-19	5.0 5		$\begin{array}{l} \alpha(\text{L3})\exp=4.7 \ 9 \ \alpha(\text{M1}+\text{M2})\exp=5.5 \ 11, \\ \alpha(\text{M3}+\text{M4}+\text{M5})\exp=1.59 \ 32, \ \alpha(\text{N})\exp=2.89 \ 57. \\ \alpha(\text{K})=3.7 \ 5; \ \alpha(\text{L})=0.962 \ 19; \ \alpha(\text{M})=0.2436 \ 34 \\ \alpha(\text{N})=0.0677 \ 10; \ \alpha(\text{O})=0.01740 \ 25; \ \alpha(\text{P})=0.00325 \ 8; \\ \alpha(\text{Q})=0.000159 \ 21 \\ \text{Mult.,} \delta: \ \text{From } \alpha(\text{L1}+\text{L2})\exp=0.82 \ 14, \end{array}$			
234.6 1	0.26 3	379.52	7/2+	144.96	5/2+	M1+E2	4.7 15	0.75 13		α (L3)exp=0.054 20, α (M)exp=0.222 50. α (K)=0.23 12; α (L)=0.378 10; α (M)=0.1057 21 α (N)=0.0297 6; α (O)=0.00740 16; α (P)=0.00124 4;			

4

From ENSDF

 $^{249}_{98}\mathrm{Cf}_{151}\text{-}4$

 $^{249}_{98}\mathrm{Cf}_{151}\text{-}4$

						²⁴⁹ Es ε+μ	β^+ decay 19	076Ah07 (continued)
							γ ⁽²⁴⁹ Cf) (co	ontinued)
Eγ	$I_{\gamma}^{@}$	E _i (level)	\mathbf{J}_i^{π}	E_f	J_f^π	Mult. [†]	α #	Comments
255.0 2	0.11 3	442.98	7/2+	187.94	7/2+	M1	2.69 4	$\alpha(Q)=1.6\times10^{-5} 5$ Mult., δ : From $\alpha(K)$ exp=0.200 86, $\alpha(L1+L2)$ exp=0.314 72, $\alpha(L3)$ exp=0.054 20. $\alpha(K)=2.097 30$; $\alpha(L)=0.441 6$; $\alpha(M)=0.1084 15$ $\alpha(N)=0.0300 4$; $\alpha(O)=0.00779 11$; $\alpha(P)=0.001505 21$; $\alpha(Q)=8.82\times10^{-5} 12$
298.0 <i>1</i>	0.56 4	442.98	7/2+	144.96	5/2+	M1	1.741 24	Mult.: From α (L1+L2)exp=0.56 20. α (K)=1.360 19; α (L)=0.286 4; α (M)=0.0701 10 α (N)=0.01941 27; α (O)=0.00504 7; α (P)=0.000973 14; α (Q)=5.69×10 ⁻⁵ 8 Mult.: From α (K)exp=1.29 23, α (L1+L2)exp=0.291 56 α (M)exp=0.082 16,
370.1 2	0.14 4	813.20	(5/2)-	442.98	7/2+	[E1]	0.0296 4	α (N)exp=0.036 <i>1</i> 2. α (K)=0.02326 <i>33</i> ; α (L)=0.00476 <i>7</i> ; α (M)=0.001161 <i>16</i> α (N)=0.000320 <i>4</i> ; α (O)=8.16×10 ⁻⁵ <i>11</i> ; α (P)=1.499×10 ⁻⁵ <i>21</i> ; (O) 7 10×10 ⁻⁷ 10
375.1 <i>1</i>	3.3 <i>3</i>	437.56	9/2+	62.49	11/2-	E1	0.0288 4	$\alpha(Q) = 7.19 \times 10^{-7} 10^{-7} 10^{-7} \alpha(K) = 0.00462 \ 6; \ \alpha(M) = 0.001128 \ 16^{-7} \alpha(N) = 0.000310 \ 4; \ \alpha(Q) = 7.93 \times 10^{-5} \ 11; \ \alpha(P) = 1.457 \times 10^{-5} \ 20; \ \alpha(Q) = 7.01 \times 10^{-7} \ $
379.5 1	40.6 25	379.52	7/2+	0	9/2-	E1	0.0281 4	Mult.: From α (K)exp=0.0257 49, α (L1+L2)exp=0.0056 18. α (K)=0.02213 31; α (L)=0.00451 6; α (M)=0.001100 15 α (N)=0.000303 4; α (O)=7.73×10 ⁻⁵ 11; α (P)=1.422×10 ⁻⁵ 20; α (Q)=6.86×10 ⁻⁷ 10 Mult.: From α (K)exp=0.026 4, α (L1+L2)exp=0.005 1, α (K)exp=0.00048 14,
433.7 3	0.062 10	813.20	(5/2)-	379.52	7/2+	[E1]	0.02156 <i>30</i>	α (M)exp=0.0015 3. α (K)=0.01704 24; α (L)=0.00340 5; α (M)=0.000827 12 α (N)=0.0002277 32; α (O)=5.83×10 ⁻⁵ 8; α (P)=1.078×10 ⁻⁵ 15;
437.6 1	0.75 5	437.56	9/2+	0	9/2-	E1	0.02119 <i>30</i>	$\alpha(Q)=5.34\times10^{-7} 8$ $\alpha(K)=0.01675 23; \ \alpha(L)=0.00333 5; \ \alpha(M)=0.000812 11$ $\alpha(N)=0.0002235 31; \ \alpha(O)=5.72\times10^{-5} 8; \ \alpha(P)=1.059\times10^{-5} 15;$ $\alpha(Q)=5.25\times10^{-7} 7$
443.1 <i>3</i>	0.031 9	442.98	7/2+	0	9/2-	[E1]	0.02068 29	Mult.: From α (K)exp=0.0245 54. α (K)=0.01635 23; α (L)=0.00325 5; α (M)=0.000791 11 α (N)=0.0002177 31; α (O)=5.57×10 ⁻⁵ 8; α (P)=1.032×10 ⁻⁵ 15; α (O)=5.13×10 ⁻⁷ 7
507.3 <i>3</i>	0.04 1	1007.97	$(9/2^+)$	500.67?	$(9/2^+)$	[M1,E2]	0.23 17	$\alpha(Q) = 0.15 \times 10^{-1} \text{ (L)} = 0.044 \ 22; \ \alpha(M) = 0.011 \ 5$
565.0 2	0.210 17	1007.97	(9/2+)	442.98	7/2+	M1	0.302 4	$\alpha(N)=0.0030\ 14;\ \alpha(O)=8.E-4\ 4;\ \alpha(P)=1.5\times10^{-6}\ 8;\ \alpha(Q)=7.E-6\ 6$ $\alpha(K)=0.2362\ 33;\ \alpha(L)=0.0490\ 7;\ \alpha(M)=0.01200\ 17$ $\alpha(N)=0.00332\ 5;\ \alpha(O)=0.000862\ 12;\ \alpha(P)=0.0001664\ 23;\ \alpha(Q)=9.73\times10^{-6}\ 14$ Mult : From $\alpha(K)\exp=0.233\ 46\ \alpha(L+1)\exp=0.049\ 16$
570.3 3	0.054 14	1007.97	(9/2+)	437.56	9/2+	M1	0.294 4	$\alpha(K)=0.2303 \ 32; \ \alpha(L)=0.0477 \ 7; \ \alpha(M)=0.01170 \ 16$ $\alpha(N)=0.00324 \ 5; \ \alpha(O)=0.000840 \ 12; \ \alpha(P)=0.0001622 \ 23; \ \alpha(Q)=9.48\times10^{-6} \ 13$ Mult : From $\alpha(K)\exp=0.189 \ 79$
609.2 4	≈0.03	852.19	(7/2)-	243.07	9/2+	[E1]	0.01132 16	$\alpha(K)=0.00904 \ 13; \ \alpha(L)=0.001719 \ 24; \ \alpha(M)=0.000416 \ 6$

S

						$ES \mathcal{E} + \beta$	decay 1976A	iv/ (continued	<u>a)</u>
							γ ⁽²⁴⁹ Cf) (continu	ied)	
Eγ	$I_{\gamma}^{@}$	E _i (level)	\mathbf{J}_i^{π}	E_{f}	\mathbf{J}_f^{π}	Mult. [†]	δ^{\dagger}	α #	Comments
625.3 2	0.130 <i>13</i>	813.20	(5/2)-	187.94	7/2+	[E1]		0.01080 15	$ \begin{array}{c} \alpha(\mathrm{N}) = 0.0001146 \ 16; \ \alpha(\mathrm{O}) = 2.94 \times 10^{-5} \ 4; \ \alpha(\mathrm{P}) = 5.52 \times 10^{-6} \ 8; \\ \alpha(\mathrm{Q}) = 2.91 \times 10^{-7} \ 4 \\ \alpha(\mathrm{K}) = 0.00862 \ 12; \ \alpha(\mathrm{L}) = 0.001634 \ 23; \ \alpha(\mathrm{M}) = 0.000396 \ 6 \\ \alpha(\mathrm{N}) = 0.0001089 \ 15; \ \alpha(\mathrm{O}) = 2.80 \times 10^{-5} \ 4; \ \alpha(\mathrm{P}) = 5.25 \times 10^{-6} \ 7; \end{array} $
628.5 2	0.210 17	1007.97	(9/2+)	379.52	7/2+	M1(+E2)	0.71 +31-28	0.163 <i>34</i>	$\begin{aligned} &\alpha(\mathbf{Q}) = 2.78 \times 10^{-7} \ 4 \\ &\alpha(\mathbf{K}) = 0.126 \ 27; \ \alpha(\mathbf{L}) = 0.028 \ 5; \ \alpha(\mathbf{M}) = 0.0069 \ 11 \\ &\alpha(\mathbf{N}) = 0.00192 \ 30; \ \alpha(\mathbf{O}) = 0.00050 \ 8; \ \alpha(\mathbf{P}) = 9.5 \times 10^{-5} \ 16; \\ &\alpha(\mathbf{Q}) = 5.2 \times 10^{-6} \ 11 \end{aligned}$
664.0 5	≈0.01	852.19	(7/2)-	187.94	7/2+	[E1]		0.00968 14	Mult.: From α (K)exp=0.126 27. α (K)=0.00775 11; α (L)=0.001457 21; α (M)=0.000353 5 α (N)=9.70×10 ⁻⁵ 14; α (O)=2.496×10 ⁻⁵ 35; α (P)=4.69×10 ⁻⁶ 7: α (O)=2.504×10 ⁻⁷ 25
668.3 2	0.240 <i>19</i>	813.20	(5/2)-	144.96	5/2+	E1		0.00957 13	$\alpha(K) = 0.00766 \ 11; \ \alpha(L) = 0.001440 \ 20; \ \alpha(M) = 0.000348 \ 5$ $\alpha(N) = 9.59 \times 10^{-5} \ 13; \ \alpha(O) = 2.466 \times 10^{-5} \ 35; \ \alpha(P) = 4.64 \times 10^{-6} \ 6; \ \alpha(Q) = 2.476 \times 10^{-7} \ 35$
707.0 5	≈0.03	852.19	(7/2)-	144.96	5/2+	[E1]		0.00865 12	Mult.: From α (K)exp \approx 0.038. α (K)=0.00693 <i>10</i> ; α (L)=0.001295 <i>18</i> ; α (M)=0.000313 <i>4</i> α (N)=8.61 \times 10 ⁻⁵ <i>12</i> ; α (O)=2.217 \times 10 ⁻⁵ <i>31</i> ; α (P)=4.18 \times 10 ⁻⁶ <i>6</i> ; α (Q)=2.249 \times 10 ⁻⁷ <i>32</i>
766.3 ^{&} 3	0.10 ^{&} 1	902.52	(9/2 ⁻)	136.22	13/2-	[E2]		0.0260 4	$\begin{aligned} &\alpha(\mathbf{K}) = 0.01744\ 24;\ \alpha(\mathbf{L}) = 0.00632\ 9;\ \alpha(\mathbf{M}) = 0.001645\ 23\\ &\alpha(\mathbf{N}) = 0.000458\ 6;\ \alpha(\mathbf{O}) = 0.0001166\ 16;\ \alpha(\mathbf{P}) = 2.119 \times 10^{-5}\\ &30;\ \alpha(\mathbf{Q}) = 7.71 \times 10^{-7}\ 11 \end{aligned}$
766.3 ^{&a} 3	0.10 ^{&} 1	1007.97	(9/2+)	243.07	9/2+	[M1,E2]		0.08 5	$\begin{aligned} &\alpha(\text{K}) = 0.06 \ 4; \ \alpha(\text{L}) = 0.014 \ 8; \ \alpha(\text{M}) = 0.0034 \ 18 \\ &\alpha(\text{N}) = 1.0 \times 10^{-3} \ 5; \ \alpha(\text{O}) = 2.5 \times 10^{-4} \ 13; \ \alpha(\text{P}) = 4.7 \times 10^{-5} \ 26; \\ &\alpha(\text{Q}) = 2.5 \times 10^{-6} \ 17 \end{aligned}$
789.7 1	1.15 9	852.19	(7/2)-	62.49	11/2-	E2		0.02448 <i>34</i>	E _γ : Poor fit in the level. Level-energy difference=764.9 <i>I</i> . $\alpha(K)$ =0.01658 23; $\alpha(L)$ =0.00583 8; $\alpha(M)$ =0.001515 21 $\alpha(N)$ =0.000422 6; $\alpha(O)$ =0.0001074 15; $\alpha(P)$ =1.956×10 ⁻⁵ 27; $\alpha(Q)$ =7.27×10 ⁻⁷ 10
813.2 1	9.2 6	813.20	(5/2)-	0	9/2-	E2		0.02309 32	Mult.: From α (K)exp=0.017 4. α (K)=0.01578 22; α (L)=0.00540 8; α (M)=0.001398 20 α (N)=0.000389 5; α (O)=9.92×10 ⁻⁵ 14; α (P)=1.810×10 ⁻⁵ 25; α (Q)=6.87×10 ⁻⁷ 10 Mult : From α (K)exp=0.016 3; α (L1+L2)exp=0.0051 9
820.5 5	≈0.01	1007.97	(9/2+)	187.94	7/2+	[M1,E2]		0.07 4	$\begin{array}{l} \alpha(L3)\exp=0.00055\ 24,\ \alpha(M)\exp=0.00155\ 40.\\ \alpha(K)=0.051\ 35;\ \alpha(L)=0.012\ 6;\ \alpha(M)=0.0029\ 15\\ \alpha(N)=8.E-4\ ;\ \alpha(O)=2.0\times10^{-4}\ 11;\ \alpha(P)=3.9\times10^{-5}\ 21;\\ \alpha(O)=2.1\times10^{-6}\ 14 \end{array}$
840.0 2	0.097 9	902.52	(9/2 ⁻)	62.49	11/2-	[M1,E2]		0.06 4	$\alpha(Q) = 2.1 \times 10^{-14}$ $\alpha(K) = 0.048 \ 33; \ \alpha(L) = 0.011 \ 6; \ \alpha(M) = 0.0027 \ 14$

6

From ENSDF

 $^{249}_{98}\mathrm{Cf}_{151}\text{-}6$

 $^{249}_{98}\mathrm{Cf}_{151}$ -6

					²⁴⁹ Es	ε + β^+ decay	1976Ah07 (c	continued)	
						γ (²⁴⁹ C	f) (continued)		
Eγ	$I_{\gamma}^{@}$	E _i (level)	J_i^π	E_f	\mathbf{J}_f^{π}	Mult. [†]	δ^{\dagger}	α #	Comments
852.2 1	0.88 7	852.19	(7/2)-	0	9/2-	E2		0.02105 29	$\alpha(N)=7.E-4 \ i; \ \alpha(O)=1.9\times10^{-4} \ 10; \ \alpha(P)=3.7\times10^{-5} \ 20; \\ \alpha(Q)=2.0\times10^{-6} \ 13 \\ \alpha(K)=0.01459 \ 20; \ \alpha(L)=0.00478 \ 7; \ \alpha(M)=0.001234 \ 17 \\ \alpha(N)=0.000343 \ 5; \ \alpha(O)=8.75\times10^{-5} \ 12; \\ \alpha(P)=1.603\times10^{-5} \ 22; \ \alpha(Q)=6.27\times10^{-7} \ 9 \\ Mult : From \ \alpha(K)exn=0 \ 0151 \ 32 $
862.8 <i>3</i>	0.018 6	1007.97	(9/2+)	144.96	5/2+	[E2]		0.02054 29	$\alpha(L1+L2)\exp[=0.0070\ 25, \alpha(K)=0.01194\ 17$ $\alpha(K)=0.01428\ 20;\ \alpha(L)=0.00463\ 6;\ \alpha(M)=0.001194\ 17$ $\alpha(N)=0.000332\ 5;\ \alpha(O)=8.47\times10^{-5}\ 12;$ $\alpha(N)=0.000332\ 5;\ \alpha(O)=8.47\times10^{-5}\ 12;$
902.6 3	0.018 6	902.52	(9/2 ⁻)	0	9/2-	[M1,E2]		0.052 33	$\alpha(\mathbf{F}) = 1.535 \times 10^{-22}; \ \alpha(\mathbf{Q}) = 6.12 \times 10^{-9} \text{ g}$ $\alpha(\mathbf{K}) = 0.040 \ 27; \ \alpha(\mathbf{L}) = 0.009 \ 5; \ \alpha(\mathbf{M}) = 0.0022 \ 11$ $\alpha(\mathbf{N}) = 6.1 \times 10^{-4} \ 32; \ \alpha(\mathbf{O}) = 1.6 \times 10^{-4} \ 8; \ \alpha(\mathbf{P}) = 3.0 \times 10^{-5}$
945.4 <i>1</i>	0.24 2	1007.97	(9/2+)	62.49	11/2-	(E1)		0.00521 7	<i>I</i> 6; α (Q)=1.6×10 ⁻⁶ <i>I</i> 1 α (K)=0.00420 6; α (L)=0.000762 <i>I</i> 1; α (M)=0.0001835 26
									α (N)=5.05×10 ⁻⁵ 7; α (O)=1.303×10 ⁻⁵ 18; α (P)=2.475×10 ⁻⁶ 35; α (Q)=1.385×10 ⁻⁷ 19 Mult.: Deduced by authors (1976Ah07) from upper limit set for ce(K).
x 1000.5 5 1007.9 1	0.020 8 0.73 6	1007.97	(9/2+)	0	9/2-	(E1)		0.00467 7	$\alpha(K)=0.00377 5; \alpha(L)=0.000681 10; \alpha(M)=0.0001637$ 23 $\alpha(N)=4.51\times10^{-5} 6; \alpha(O)=1.163\times10^{-5} 16;$ $\alpha(P)=2.213\times10^{-6} 31; \alpha(Q)=1.247\times10^{-7} 17$ Mult.: Deduced by authors (1976Ah07) from upper limit act for $\alpha(K)$
x1021.4 5 1093.2 3 1137.3 5	≈ 0.01 0.031 6 ≈ 0.01 0.016 6	1238.05 1199.8	$(5/2^{-},7/2,9/2^{+})$ $(7/2^{-},9/2)$ $(7/2^{-},9/2)$	144.96 62.49	5/2 ⁺ 11/2 ⁻ 9/2 ⁻				mmt set for ce(K).
1205.1 5	0.030 6	1267.7	$(9/2^{-})$	62.49	$11/2^{-}$	[M1,E2]		0.025 14	α (K)=0.019 <i>11</i> ; α (L)=0.0042 <i>21</i> ; α (M)=1.0×10 ⁻³ <i>5</i> α (N)=2.8×10 ⁻⁴ <i>14</i> ; α (O)=7.E-5 <i>4</i> ; α (P)=1.4×10 ⁻⁵ <i>7</i> ;
1218.5 <i>1</i>	1.51 10	1218.50	(7/2)-	0	9/2-	M1+E2	0.62 +29-28	0.030 5	$\alpha(Q)=8.E-7 5; \alpha(IPF)=7.E-6 4$ $\alpha(K)=0.024 4; \alpha(L)=0.0050 7; \alpha(M)=0.00122 17$ $\alpha(N)=0.00034 5; \alpha(O)=8.7\times10^{-5} 12; \alpha(P)=1.68\times10^{-5}$ $24; \alpha(Q)=9.6\times10^{-7} 16; \alpha(IPF)=1.10\times10^{-5} 17$ Mult.: From $\alpha(K)\exp=0.0230 43, \alpha(L)+L_2)\exp=0.0054 16.$
1238.0 2 1267.8 5	0.023 <i>3</i> 0.006 <i>2</i>	1238.05 1267.7	(5/2 ⁻ ,7/2,9/2 ⁺) (9/2 ⁻)	0 0	9/2 ⁻ 9/2 ⁻	[M1,E2]		0.022 12	$\alpha(K)=0.017 \ 10; \ \alpha(L)=0.0037 \ 18; \ \alpha(M)=9.E-4 \ 4$

7

$I_{\gamma}^{(0)}$ $E_f J_f^{\pi}$ Comments E_{γ} E_i (level) $\alpha(N)=2.5\times10^{-4}$ 12; $\alpha(O)=6.4\times10^{-5}$ 31; $\alpha(P)=1.2\times10^{-5}$ 6; $\alpha(Q)=7.E-7$ 4; $\alpha(IPF)=1.8\times10^{-5}$ 10 0 9/2-1304.3 3 0.038 4 1304.30 [†] From conversion coefficients deduced by the evaluator from Ice and I_γ data measured by 1976Ah07. The evaluator has normalized the experimental conversion coefficient values using the Normalized to Peak Gamma Method (NPG). Three well-known E2 gamma transistions were used in the normalization $N(\gamma) = \alpha(K)(BrICC)/\alpha(K)(exp)$: 789.7, 813.2 and 852.2 transitions with 1.00(18), 1.04 (13), 0.99 (17), respectively giving a weighted average N=1.02 13. α (normalized)=N*(Ice/I γ) are given in comments. All values are given in the Adopted Gammas as well. [‡] From analysis of anomalous M2 conversion coefficients, see 1993Li52. [#] Additional information 1.

²⁴⁹Es ε + β ⁺ decay

1976Ah07 (continued)

 γ (²⁴⁹Cf) (continued)

[@] Absolute intensity per 100 decays.

[&] Multiply placed with undivided intensity.

^a Placement of transition in the level scheme is uncertain.

 $x \gamma$ ray not placed in level scheme.

 $^{249}_{98}\mathrm{Cf}_{151}$

6-¹⁵¹JJ⁸⁶ 5#6CE From ENSDF

⁸⁶₅₇₆Ct¹²¹-0

6

²⁴⁹₉₈Cf₁₅₁