# $^{249}$ Cm $\beta^-$ decay 2005Ah03

|                 |                | History            |                        |
|-----------------|----------------|--------------------|------------------------|
| Туре            | Author         | Citation           | Literature Cutoff Date |
| Full Evaluation | C. D. Nesaraja | NDS 195,718 (2024) | 12-Oct-2023            |

Parent: <sup>249</sup>Cm: E=0.0;  $J^{\pi}=1/2^+$ ;  $T_{1/2}=64.15 \text{ min } 3$ ;  $Q(\beta^-)=904.4\ 26$ ;  $\%\beta^-$  decay=100 <sup>249</sup>Cm- $Q(\beta^-)$ : From 2021Wa16.

2005Ah03: <sup>249</sup>Cm isotope prepared by neutron capture reactions on <sup>248</sup>Cm targets. The irradiations were performed at both the Livermore pool-type reactor and the General Electric test reactor in California. It was then followed by chemical separation to remove fission products. Measured  $E\gamma$  and  $I\gamma$ , with three Ge(Li) detectors, where only one was equipped with a NaI Compton-suppression shield and the  $E\beta$  and  $I\beta$  with a gas-flow proportional counter and the  $\beta$  spectrum and conversion electrons with a cooled Si(Li) detector. Note: No conversion electron data are given in 2005Ah03. All  $\gamma$  rays assigned to <sup>249</sup>Cm  $\beta$ -decay exhibited decays consistent with the adopted  $T_{1/2}$  for the parent.

Others: 1975HoZA (unable to obtain this private communication), 1958Ea06.

### <sup>249</sup>Bk Levels

| E(level) <sup>†</sup> | $J^{\pi}$ | T <sub>1/2</sub> ‡ | E(level) <sup>†</sup>   | $J^{\pi}$ | E(level) <sup>†</sup>      | $J^{\pi}$   |
|-----------------------|-----------|--------------------|-------------------------|-----------|----------------------------|-------------|
| 0.0                   | 7/2+      | 327.2 d <i>3</i>   | 377.49 19               | $(1/2^+)$ | 558.05 <sup>@</sup> 18     | (3/2-)      |
| 8.71 <sup>#</sup> 19  | 3/2-      | 0.3 ms             | 389.12 17               | $(5/2^+)$ | 569.10 <sup>@</sup> 20     | $(1/2^{-})$ |
| 39.58 <sup>#</sup> 19 | $5/2^{-}$ |                    | 410.50? <sup>a</sup> 22 | $(3/2^+)$ | 643.05 <sup>&amp;</sup> 20 | $(1/2^{-})$ |
| 82.65 <sup>a</sup> 27 | $7/2^{-}$ |                    | 421.18 <sup>a</sup> 17  | $(5/2^+)$ | 661.50 <sup>&amp;</sup> 20 | $(3/2^{-})$ |

 $^{\dagger}$  From least-squares fit to  $E\gamma$  data by the evaluator.

<sup>‡</sup> From Adopted Levels.

<sup>#</sup> Band(A): 3/2[521].

<sup>@</sup> Band(B): 1/2[530].

& Band(C): 1/2[521].

<sup>a</sup> Seq.(D): 1/2[400].

#### $\beta^-$ radiations

| E(decay)                                                                         | E(level)                             | $I\beta^{-\dagger\ddagger}$                                    | Log ft                                                           | Comments                                                                                         |  |
|----------------------------------------------------------------------------------|--------------------------------------|----------------------------------------------------------------|------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--|
| (242.9 28)<br>(261.4 28)<br>(335.3 28)<br>(346 4 28)                             | 661.50<br>643.05<br>569.10<br>558.05 | 0.320 <i>17</i><br>1.51 <i>10</i><br>1.03 8<br>0.217 <i>17</i> | 6.53 <i>3</i><br>5.96 <i>4</i><br>6.47 <i>4</i><br>7 19 <i>4</i> | av $E\beta$ =65.99 77<br>av $E\beta$ =71.37 79<br>av $E\beta$ =93.53 80<br>av $E\beta$ =96.90 80 |  |
| $\begin{array}{c} (493.9^{\#} \ 28) \\ (526.9 \ 28) \\ (895.7 \ 28) \end{array}$ | 410.50?<br>377.49<br>8.71            | 0.316 23<br>96.6 2                                             | 7.62 <i>4</i><br>5.903 <i>5</i>                                  | av $E\beta = 154.01 \ 86$<br>av $E\beta = 280.17 \ 93$                                           |  |

<sup>†</sup> Deduced by evaluator from intensity balance at each level in <sup>249</sup>Cm  $\beta$ -decay scheme.

<sup>‡</sup> Absolute intensity per 100 decays.

<sup>#</sup> Existence of this branch is questionable.

|                                |                                   |                        |                            |                  |                                            | $^{249}$ Cm $\beta^-$ o | decay 2005Ah(             | 3 (continued)          |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|--------------------------------|-----------------------------------|------------------------|----------------------------|------------------|--------------------------------------------|-------------------------|---------------------------|------------------------|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                |                                   |                        |                            |                  |                                            |                         | $\gamma(^{249}\text{Bk})$ |                        |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $E_{\gamma}^{\dagger}$         | $I_{\gamma}^{@a}$                 | E <sub>i</sub> (level) | $\mathbf{J}_i^\pi$         | $E_f$            | $\mathbf{J}_f^{\pi}$                       | Mult. <sup>#</sup>      | $\delta^{\#}$             | $\alpha^{\&}$          | $I_{(\gamma+ce)}^{a}$ | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| (8.77)                         |                                   | 8.71                   | 3/2-                       | 0.0              | 7/2+                                       | [M2]                    |                           | 3.07×10 <sup>6</sup> 4 | 99.9765 31            | $\begin{aligned} \alpha(\mathrm{M}) =& 2.222 \times 10^6 \ 3I \\ \alpha(\mathrm{N}) =& 6.49 \times 10^5 \ 9; \ \alpha(\mathrm{O}) =& 1.653 \times 10^5 \ 23; \\ \alpha(\mathrm{P}) =& 2.97 \times 10^4 \ 4; \ \alpha(\mathrm{Q}) =& 1564 \ 22 \\ \mathrm{E}_{\gamma}: \ \mathrm{Deduced} \ \mathrm{by} \ \mathrm{evaluator} \ \mathrm{from} \\ \mathrm{level-energy} \ \mathrm{difference.} \\ \mathrm{I}_{(\gamma+ce)}: \ \mathrm{Deduced} \ \mathrm{by} \ \mathrm{evaluator} \ \mathrm{from} \\ \mathrm{intensity} \ \mathrm{balance} \ \mathrm{at} \ \mathrm{g.s.}, \ \mathrm{with} \ \mathrm{I}\beta \ \mathrm{to} \\ \mathrm{g.s.} =& 0; \ \Sigma\mathrm{I}\gamma(1+\alpha) \ \mathrm{to} \ \mathrm{g.s.} =& 100. \end{aligned}$ |
| (30.85 <sup>‡</sup> 1)         |                                   | 39.58                  | 5/2-                       | 8.71             | 3/2-                                       | M1+E2                   | 0.114 +29-18              | 3.1×10 <sup>2</sup> 4  |                       | $\begin{array}{l} \alpha(\text{L}) = 231 \ 29; \ \alpha(\text{M}) = 59 \ 8 \\ \alpha(\text{N}) = 16.3 \ 23; \ \alpha(\text{O}) = 4.1 \ 6; \ \alpha(\text{P}) = 0.78 \ 9; \\ \alpha(\text{Q}) = 0.0441 \ 6 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (42.98 <sup>‡</sup> <i>1</i> ) |                                   | 82.65                  | 7/2-                       | 39.58            | 5/2-                                       | M1+E2                   | 0.111 +25-16              | 103 6                  |                       | $\alpha$ (L)=77 5; $\alpha$ (M)=19.3 13<br>$\alpha$ (N)=5.3 4; $\alpha$ (O)=1.37 9; $\alpha$ (P)=0.263<br>15: $\alpha$ (O)=0.01647 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| (43.7)                         |                                   | 421.18                 | (5/2 <sup>+</sup> )        | 377.49           | (1/2 <sup>+</sup> )                        | [E2]                    |                           | 1070                   | ≈0.036                | $E_{\gamma}$ : Placed in decay scheme by the evaluator on the basis of intensity balance at 421.2-keV level.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| (73.82 <sup>‡</sup> <i>I</i> ) |                                   | 82.65                  | 7/2-                       | 8.71             | 3/2-                                       | E2                      |                           | 84.9 12                |                       | $\alpha$ (L)=61.2 9; $\alpha$ (M)=17.38 24<br>$\alpha$ (N)=4.86 7; $\alpha$ (O)=1.191 17;<br>$\alpha$ (P)=0.1964 28; $\alpha$ (Q)=0.000663 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 85.2 2<br>136.9 <i>1</i>       | 0.0054 <i>5</i><br>0.039 <i>3</i> | 643.05<br>558.05       | $(1/2^{-})$<br>$(3/2^{-})$ | 558.05<br>421.18 | (3/2 <sup>-</sup> )<br>(5/2 <sup>+</sup> ) | [E1]                    |                           | 0.256 4                |                       | % Iγ=0.0054 5<br>$\alpha$ (K)=0.1918 27; $\alpha$ (L)=0.0483 7;<br>$\alpha$ (M)=0.01194 17<br>$\alpha$ (N)=0.00326 5; $\alpha$ (O)=0.000812 11;<br>$\alpha$ (P)=0.0001447 20; $\alpha$ (Q)=6.41×10 <sup>-6</sup> 9<br>% Iγ=0.039 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 158.6 <i>1</i>                 | 0.0029 4                          | 569.10                 | (1/2 <sup>-</sup> )        | 410.50?          | (3/2 <sup>+</sup> )                        | [E1]                    |                           | 0.1842 26              |                       | $\begin{aligned} &\alpha(\mathbf{K}) = 0.039 \ 3^{\circ} \ 20; \ \alpha(\mathbf{L}) = 0.0334 \ 5; \\ &\alpha(\mathbf{M}) = 0.00824 \ 12 \\ &\alpha(\mathbf{N}) = 0.002253 \ 32; \ \alpha(\mathbf{O}) = 0.000563 \ 8; \\ &\alpha(\mathbf{P}) = 0.0001013 \ 14; \ \alpha(\mathbf{Q}) = 4.69 \times 10^{-6} \ 7 \\ &\% \mathbf{I}\gamma = 0.0029 \ 4 \end{aligned}$                                                                                                                                                                                                                                                                                                                                                                      |
| 168.8 2                        | 0.0022 2                          | 558.05                 | (3/2 <sup>-</sup> )        | 389.12           | (5/2+)                                     | [E1]                    |                           | 0.1599 23              |                       | $\begin{array}{l} \alpha({\rm K}) = 0.1217 \ 17; \ \alpha({\rm L}) = 0.0286 \ 4; \\ \alpha({\rm M}) = 0.00705 \ 10 \\ \alpha({\rm N}) = 0.001929 \ 28; \ \alpha({\rm O}) = 0.000482 \ 7; \\ \alpha({\rm P}) = 8.72 \times 10^{-5} \ 12; \ \alpha({\rm Q}) = 4.11 \times 10^{-6} \ 6 \\ \% {\rm I}\gamma = 0.0022 \ 2 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                     |
| 180.5 <i>1</i>                 | 0.0200 14                         | 558.05                 | (3/2 <sup>-</sup> )        | 377.49           | (1/2+)                                     | [E1]                    |                           | 0.1373 19              |                       | $\begin{aligned} &\alpha(\dot{\mathbf{K}}) = 0.1049 \ 15; \ \alpha(\mathbf{L}) = 0.02426 \ 34; \\ &\alpha(\mathbf{M}) = 0.00597 \ 8 \\ &\alpha(\mathbf{N}) = 0.001634 \ 23; \ \alpha(\mathbf{O}) = 0.000409 \ 6; \\ &\alpha(\mathbf{P}) = 7.43 \times 10^{-5} \ 10; \ \alpha(\mathbf{Q}) = 3.57 \times 10^{-6} \ 5 \\ &\% \mathbf{I}\gamma = 0.0200 \ 14 \end{aligned}$                                                                                                                                                                                                                                                                                                                                                               |

2

|                                   |                                    |                        |                                            |                  |                                      | $^{249}$ Cm $\beta^-$ c | lecay 2                     | 005Ah03 (cont   | tinued)                                                                                                                                                                                                                                                                                                                                               |
|-----------------------------------|------------------------------------|------------------------|--------------------------------------------|------------------|--------------------------------------|-------------------------|-----------------------------|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                   |                                    |                        |                                            |                  |                                      |                         | $\gamma(^{249}\text{Bk})$ ( | continued)      |                                                                                                                                                                                                                                                                                                                                                       |
| $E_{\gamma}^{\dagger}$            | $I_{\gamma}^{@a}$                  | E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$                       | $\mathbf{E}_{f}$ | $\mathbf{J}_f^{\pi}$                 | Mult. <sup>#</sup>      | δ <sup>#</sup>              | α <b>&amp;</b>  | Comments                                                                                                                                                                                                                                                                                                                                              |
| 191.6 <i>1</i>                    | 0.0100 9                           | 569.10                 | (1/2 <sup>-</sup> )                        | 377.49           | (1/2 <sup>+</sup> )                  | [E1]                    |                             | 0.1199 17       | $\alpha(K)=0.0920 \ 13; \ \alpha(L)=0.02097 \ 29; \ \alpha(M)=0.00516 \ 7$<br>$\alpha(N)=0.001411 \ 20; \ \alpha(O)=0.000354 \ 5; \ \alpha(P)=6.45\times10^{-5} \ 9;$<br>$\alpha(Q)=3.15\times10^{-6} \ 4$<br>$\alpha(Q)=0.000 \ 9$                                                                                                                   |
| 368.76 <i>6</i><br>389.0 2        | 0.350 <i>23</i><br>0.0063 <i>8</i> | 377.49<br>389.12       | $(1/2^+)$<br>$(5/2^+)$                     | 8.71<br>0.0      | 3/2 <sup>-</sup><br>7/2 <sup>+</sup> | M1                      |                             | 0.764 11        |                                                                                                                                                                                                                                                                                                                                                       |
| $(402.0^{\ddagger} I)$<br>421.3 2 | 0.0092 10                          | 410.50?<br>421.18      | (3/2 <sup>+</sup> )<br>(5/2 <sup>+</sup> ) | 8.71<br>0.0      | 3/2 <sup>-</sup><br>7/2 <sup>+</sup> | [M1,E2]                 |                             | 0.35 26         | $\alpha$ (K)=0.26 22; $\alpha$ (L)=0.068 31; $\alpha$ (M)=0.017 7<br>$\alpha$ (N)=0.0047 20; $\alpha$ (O)=0.0012 5; $\alpha$ (P)=2.3×10 <sup>-4</sup> 11;<br>$\alpha$ (Q)=1.3×10 <sup>-5</sup> 10<br>$\alpha$ (L)=0.0002 10                                                                                                                           |
| 475.4 2                           | 0.0072 12                          | 558.05                 | (3/2 <sup>-</sup> )                        | 82.65            | 7/2-                                 | [E2]                    |                             | 0.0705 10       | %1γ=0.0092 10<br>$\alpha(K)=0.0374 5; \alpha(L)=0.02420 34; \alpha(M)=0.00652 9$<br>$\alpha(N)=0.001815 26; \alpha(O)=0.000453 6; \alpha(P)=8.16\times10^{-5} 11;$<br>$\alpha(Q)=2.296\times10^{-6} 32$                                                                                                                                               |
| 518.5 <i>1</i>                    | 0.088 6                            | 558.05                 | (3/2 <sup>-</sup> )                        | 39.58            | 5/2-                                 | [M1,E2]                 |                             | 0.20 15         | $ \begin{aligned} &\alpha(\mathbf{K}) = 0.0072 \ 12 \\ &\alpha(\mathbf{K}) = 0.15 \ 12; \ \alpha(\mathbf{L}) = 0.037 \ 19; \ \alpha(\mathbf{M}) = 0.009 \ 4 \\ &\alpha(\mathbf{N}) = 0.0026 \ 12; \ \alpha(\mathbf{O}) = 6.6 \times 10^{-4} \ 32; \ \alpha(\mathbf{P}) = 1.3 \times 10^{-4} \ 7; \\ &\alpha(\mathbf{Q}) = 8.E - 6 \ 6 \end{aligned} $ |
| 529.5 2                           | 0.0070 8                           | 569.10                 | (1/2 <sup>-</sup> )                        | 39.58            | 5/2-                                 | [E2]                    |                             | 0.0545 8        | $\alpha(K)=0.0312 \ 4; \ \alpha(L)=0.01709 \ 24; \ \alpha(M)=0.00457 \ 6$<br>$\alpha(N)=0.001270 \ 18; \ \alpha(O)=0.000318 \ 4; \ \alpha(P)=5.77\times10^{-5} \ 8;$<br>$\alpha(Q)=1.825\times10^{-6} \ 26$                                                                                                                                           |
| 549.4 1                           | 0.030 5                            | 558.05                 | (3/2 <sup>-</sup> )                        | 8.71             | 3/2-                                 | [M1,E2]                 |                             | 0.17 12         | $\alpha(K)=0.13 \ 10; \ \alpha(L)=0.032 \ 16; \ \alpha(M)=0.008 \ 4$<br>$\alpha(N)=0.0022 \ 11; \ \alpha(O)=5.6\times10^{-4} \ 27; \ \alpha(P)=1.1\times10^{-4} \ 6;$<br>$\alpha(Q)=7.E-6 \ 5$<br>%Iy=0.030 \ 5                                                                                                                                       |
| 560.4 1                           | 0.84 6                             | 569.10                 | (1/2 <sup>-</sup> )                        | 8.71             | 3/2-                                 | (M1+E2)                 | 0.75 20                     | 0.198 <i>30</i> | $\begin{array}{l} \alpha(\mathrm{K}) = 0.152 \ 25; \ \alpha(\mathrm{L}) = 0.034 \ 4; \ \alpha(\mathrm{M}) = 0.0085 \ 9 \\ \alpha(\mathrm{N}) = 0.00234 \ 26; \ \alpha(\mathrm{O}) = 0.00060 \ 7; \ \alpha(\mathrm{P}) = 0.000117 \ 14; \\ \alpha(\mathrm{Q}) = 7.5 \times 10^{-6} \ 12 \\ \% \mathrm{I}\gamma = 0.84 \ 6 \end{array}$                 |
| 603.4 2                           | 0.0064 9                           | 643.05                 | (1/2 <sup>-</sup> )                        | 39.58            | 5/2-                                 | [E2]                    |                             | 0.0406 6        | $\alpha(K)=0.02499\ 35;\ \alpha(L)=0.01145\ 16;\ \alpha(M)=0.00303\ 4$<br>$\alpha(N)=0.000841\ 12;\ \alpha(O)=0.0002111\ 30;\ \alpha(P)=3.87\times10^{-5}\ 5;$<br>$\alpha(Q)=1.392\times10^{-6}\ 20$<br>$\alpha(Q)=0.0064\ 9$                                                                                                                         |
| 621.9 <i>1</i>                    | 0.180 13                           | 661.50                 | (3/2-)                                     | 39.58            | 5/2-                                 |                         |                             |                 | %Iy=0.180 <i>13</i>                                                                                                                                                                                                                                                                                                                                   |

From ENSDF

L

## $\gamma(^{249}\text{Bk})$ (continued)

| $E_{\gamma}^{\dagger}$ | $I_{\gamma}^{\textcircled{a}a}$ | E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$ | $\mathbf{E}_f  \mathbf{J}_f^{\pi}$ | Comments          |
|------------------------|---------------------------------|------------------------|----------------------|------------------------------------|-------------------|
| 634.3 <i>1</i>         | 1.5 <i>1</i>                    | 643.05                 | $(1/2^{-})$          | 8.71 3/2 <sup>-</sup>              | %Iy=1.5 <i>I</i>  |
| 652.8 <i>1</i>         | 0.14 <i>1</i>                   | 661.50                 | $(3/2^{-})$          | 8.71 3/2 <sup>-</sup>              | %Iy=0.14 <i>I</i> |

<sup>†</sup> From 2005Ah03, except as noted.
<sup>‡</sup> From Adopted Gammas.

<sup>#</sup> From Adopted Gammas. Note that in the previous evaluation, 2011Ab07 had provided multipolarities and mixing ratio for  $E\gamma$ =368.76 keV, 621.9 keV, 634.3 keV and 652.8 keV from 1975HoZA. These values are not given in the current evaluation as the evaluator is unable to verify the information.

<sup>@</sup> From 2005Ah03. <sup>&</sup> Additional information 1.

<sup>*a*</sup> Absolute intensity per 100 decays.

## $^{249}$ Cm $\beta^-$ decay 2005Ah03





