Adopted Levels:tentative

History				
Туре	Author	Citation	Literature Cutoff Date	
Full Evaluation	C. D. Nesaraja	NDS 195,718 (2024)	12-Oct-2023	

 $Q(\beta^{-})=2270 \ calc; \ S(n)=5560 \ calc; \ S(p)=5910 \ calc; \ Q(\alpha)=4850 \ calc$ 2019Mo01 $S(2n)=10020, \ S(2p)=14170 \ (theory, 2019Mo01).$

1960Di03: ²⁴⁹Pu produced from the decay of ²⁴⁹U in the debris of the first large-scale thermonuclear test (Ivy Mike) of November 1, 1952 in the Pacific Ocean. Airborne and condensed samples were collected, followed by chemical extraction and purification. The heavy uranium isotopes are expected to be produced in an environment of unusually high neutron flux (time-integrated flux of $\approx 10^{24} \text{ n/cm}^2$) through successive neutron captures in ²³⁸U, with neutron energies of 14-MeV from deuterium-tritium fusion, and few MeV from the fission of ²³⁵U. The ²⁴⁹Cf fraction can be formed in ²⁴⁹U -> ²⁴⁹Np -> ²⁴⁹Pu -> ²⁴⁹Am -> ²⁴⁹Cm β^- -> ²⁴⁹Bk β^- -> ²⁴⁹Cf β^- decay chain. Production of ²⁴⁹Am was inferred from the detection of ²⁴⁹Cf (T_{1/2}=351 y). See also related articles: 1956Fi11, 1967Ho20, 1966Rg01 and 1969In01.

²⁴⁹ Am	Levels

E(level)	Comments
0?	%β ⁻ =?
	E(level): Indirectly deduced from the detection of 249 Cf (T _{1/2} =351 y) in the debris of the thermonuclear test.
	β^{-} is expected to be the dominant decay mode of ²⁴⁹ Am, since the theoretical half-life for α decay is 10 ¹⁵ s
	(2019Mo01).

 $T_{1/2}$: β decay half-life=10¹⁵ s (theory,2019Mo01). J^{π}: 1/2⁺ (theory,2019Mo01).