²⁴⁸Bk ε decay 1978Gr10

Type Author Citation Literature Cutoff Date
Full Evaluation M. J. Martin NDS 122, 377 (2014)

1-Sep-2014

Parent: 248 Bk: E=0.0+x; J $^{\pi}$ =1 $^{(-)}$; T $_{1/2}$ =23.7 h 2; Q(ε)=706 21; % ε decay=30 5

²⁴⁸Bk-Q(ε): From Q(β⁻)=860 20 for the 23.7-H ²⁴⁸Bk (1978Gr10) and E(²⁴⁸Cm)-E(²⁴⁸Cf)=154 7 (2012Wa38), one gets Q(ε)=706 21. Q(ε)=687 71, a systematics value, is given by 2012Wa38 for the g.s. decay.

No γ' s were observed in ²⁴⁸Bk ε decay. Since Q(ε)=687 for ²⁴⁸Bk decay, no known low-spin states other than the g.s. and 43.40-keV level are expected to be populated in the ε decay of low-spin ²⁴⁸Bk; nonobservation of any photons is consistent with 23.7-h ²⁴⁸Bk being a low spin parent.

²⁴⁸Cm Levels

E(level) J^{π} 0.0 0^{+} 43.399 25 2^{+}

ε radiations

 E(decay)
 E(level)
 $I\epsilon^{\dagger \frac{\pi}{4}}$ Log ft Comments

 (663 21)
 43.399
 22 5
 7.64 13
 εK =0.710 3; εL =0.2113 20; εM +=0.0783 9

 (706 21)
 0.0
 78 5
 7.15 9
 εK =0.7156 25; εL =0.2077 17; εM +=0.0767 8

 γ (²⁴⁸Cm)

 $\frac{E_{\gamma}}{(43.399\ 25)} \quad \frac{E_{i}(\text{level})}{43.399} \quad \frac{J_{i}^{\pi}}{2^{+}} \quad \frac{E_{f}}{0.0} \quad \frac{J_{f}^{\pi}}{0^{+}} \quad \frac{\text{Mult.}}{\text{E2}} \quad \frac{\alpha^{\ddagger}}{1000\ 15} \quad \frac{I_{(\gamma+ce)}^{\dagger}}{22\ 5}$

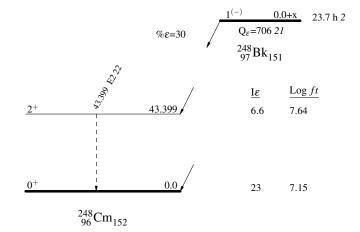
ce(L)/(γ +ce)=0.723 δ ; ce(M)/(γ +ce)=0.204 4; ce(N+)/(γ +ce)=0.0725 14 ce(N)/(γ +ce)=0.0566 11; ce(O)/(γ +ce)=0.0137 3; ce(P)/(γ +ce)=0.00223 5; ce(Q)/(γ +ce)=5.52×10⁻⁶ 12 E $_{\gamma}$,Mult.: from Adopted Gammas. This transition has not been seen In 23.7-H 248 Bk ε decay. I $_{\gamma}$,I $_{(\gamma+ce)}$: an intensity balance At the g.s. yields I(γ +ce)=22 5 and I $_{\gamma}$ =0.022 5 per 100 ε decays.

Comments

[†] 1978Gr10 deduced intensity of the ε branch to the 43.4-keV level to be (18±2) and (35±10) per 100 ε decays from their measured (L x ray)(L x ray) and (K α_1 x ray)(L x ray) coincidence intensities, respectively. The weighted average of 22±5 per 100 ε decays was suggested by 1978Gr10 for the ε decay intensity to the 2⁺ state.

[‡] For absolute intensity per 100 decays, multiply by 0.30 5.

[†] For absolute intensity per 100 decays, multiply by 0.30 5.


[‡] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

²⁴⁸Bk ε decay 1978Gr10

Legend

Decay Scheme

---- γ Decay (Uncertain)

