248 Cm(α , α'),(d,d') 1975Th11,1975Ya13

History				
Type	Author	Citation	Literature Cutoff Date	
Full Evaluation	M. J. Martin	NDS 122, 377 (2014)	1-Sep-2014	

B(EL) values given here are from 1975Th11. The values were normalized to B(E3)(1094 level)=0.41, obtained in Coulomb excitation, but note that the uncertainty of 0.10 In this normalization value is not included.

```
1975Th11: E(d)=15 MeV. FWHM \approx 8 keV. \theta=90°, 125° 1975Ya13: E(d)=16 MeV. FWHM \approx 14 keV. \theta=90°, 125° E(\alpha)=29 MeV. \theta=125°
```

²⁴⁸Cm Levels

E(level) [†]	Jπ @	Comments
0	0+&	
43 1	2+&	
144 <i>I</i>	4 ⁺ &	
299 2	6+&	
509 [#] 4	(8^{+})	
1050 [‡] 2	$(2^+)^{b}$	B(E2)=0.17 4.
1050?‡ 2	$(1^{-})^{a}$	
1095 2	3^{-a}	BE3=0.41 (normalization value from Coulomb excitation).
1131 [#] <i>3</i>	2 ⁺ <i>c</i>	
1144 2	$(4^+)^{b}_{a}$	
1172 3	$(5^{-})^{a}_{4^{+}c}$	
1222 <i>4</i> 1236 2	(3 ⁻)	B(E3)=0.15.
1305 3	(3^{-})	B(E3)=0.13.
1319 [#] 3	(5)	
1358 [#] 3		
1399 [#] 3		
1440 [#] 3		
1469 [#] 4		
1484 2	(3^{-})	B(E3)=0.10.
1514 [#] <i>3</i>		
1552 [#] 4		
1651 4		
1883 3		
1938 <i>4</i> 1969 <i>4</i>		
2000 4		E(level): weakly populated. Seen only At 125°.

[†] From 1975Ya13, except where noted otherwise.

[‡] The peak At 1950 has a B(E2) value agreeing with that for a 2^+ excitation At this energy In Coulomb excitation, suggesting that the main contribution to this peak is from this same 2^+ level; however, based on the members of the $K^{\pi}=1^-$ band seen In Coulomb excitation beginning At the 7^- member (E=1295), and with the assumption that the 3^- and 5^- band members are the levels seen here At 1094 and 1172, respectively, the 1^- band head energy is expected At 1050. The peak At this energy In (d,d') thus possibly includes both a 2^+ and a 1^- level.

248 Cm(α,α'),(d,d') 1975Th11,1975Ya13 (continued)

²⁴⁸Cm Levels (continued)

- [#] From 1975Th11. From a comparison with Adopted Levels, the energies of these authors are≈5 keV too low. The evaluator has increased the authors' values by 5 keV.
- [®] From the ratio of cross sections at 90° and 125°, and a fit to a rotational band (1975Th11,1975Ya13). The assignment for the 1131 and 1222 levels comes from ADOPTED levels.
- & $K^{\pi}=0^{+}$ g.s. band.
- ^a $K^{\pi}=1^{-}$ octupole-vibrational band.
- b K $^\pi$ =2 $^+$ γ -vibrational band.
- c K $^{\pi}$ =0⁺ band.