²⁴⁶Cm(t,p) **1977Fl06**

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	C. D. Nesaraja	NDS 204,374 (2025)	30-Jun-2024

No changes were made in this dataset from the previous evaluation 2014Ma86. E=17 MeV (1977Fl06).

Observation of strong transition strengths to the g.s. and to the first excited 0^+ state in this two-neutron stripping reaction was interpreted by 1977Fl06 as an indication of a gap at N=152 in the single-particle orbitals that is larger than the pairing gap.

²⁴⁸Cm Levels

E(level)	J^{π}	L [†]	Comments
0.0	0+	0	Population of ²⁴⁸ Cm g.s. was observed to be 1.6 times stronger than the ²⁴⁶ Cm g.s. population in (t,p) reaction.
43	2^{+}	2	
1084	0+	0	Large cross section for the 1084-keV level was observed. The strength was 36% of that for the g.s. (1977Fl06). This level was interpreted by 1977Fl06 as a two-particle two-hole pair-vibrational state.

[†] From angular distribution. $\sigma(\theta)$'s were measured between $\theta=10^{\circ}$ and 60° in 5° intervals (1977Fl06).