²⁴⁶Cm(t,p) **1977Fl06**

		History	
Type	Author	Citation	Literature Cutoff Date
Full Evaluation	M. J. Martin	NDS 122, 377 (2014)	1-Sep-2014

E=17 MeV (1977Fl06).

Observation of strong transition strengths to the g.s. and to the first excited 0^+ state in this two-neutron stripping reaction was interpreted by 1977F106 as an indication of a gap at N=152 in the single-particle orbitals that is larger than the pairing gap.

²⁴⁸Cm Levels

E(level)	\mathbf{J}^{π}	L^{\dagger}	Comments		
0.0	0+	0	Population of ²⁴⁸ Cm g.s. was observed to be 1.6 times stronger than the ²⁴⁶ Cm g.s. population in (t,p) reaction.		
43	2+	2			
1084	0+	0	Large cross section for the 1084-keV level was observed. The strength was 36% of that for the g.s. (1977Fl06). This level was interpreted by 1977Fl06 as a two-particle two-hole-pair vibrational state.		

[†] From angular distribution. $\sigma(\theta)$'s were measured between $\theta=10^{\circ}$ and 60° in 5° intervals (1977Fl06).