Adopted Levels, Gammas | Type | Author | History
Citation | Literature Cutoff Date | | | |-----------------|--------------|---------------------|------------------------|--|--| | Full Evaluation | M. J. Martin | NDS 122, 377 (2014) | 1-Sep-2014 | | | $Q(\beta^-)$ =841 SY; S(n)=5481 SY; S(p)=4743 SY; $Q(\alpha)$ =5775 SY The systematics uncertainty is 71 keV for all four entries. 2012Wa38 ²⁴⁸Bk Levels ## Cross Reference (XREF) Flags A 252 Es α decay | | | | | A 252 Es α decay | |-------------------------------|--------------------|------------------|------|---| | E(level) | \mathbf{J}^{π} | T _{1/2} | XREF | Comments | | 0.0+z | (6+,8-) | >9 y | | Assignment: 246 Cm(α ,pn) chem, ms (1965Mi08).
J ^{π} : the odd proton may be in the 7/2[633] Nilsson state in analogy to 249 Bk, and the odd neutron in the 9/2[734] state in analogy to 247 Cm and 249 Cf. The Gallagher-Moszkowski rule predicts the parallel coupled 8 ⁻ state to be lower in energy than the 1 ⁻ member of the doublet. The long-lived state might be the 8 ⁻ member of this doublet. However, it is also possible that this may be the (6 ⁺) level At E=0.0+Y fed In α decay of 252 Es rather than the 8 ⁻ level proposed by 1973Fi06. An assignment of either 6 ⁺ or 8 ⁻ is consistent with the absence of any β ⁻ decay to 248 Cf.
T _{1/2} : deduced by 1965Mi08 from observation of no change in 248 Bk/ 247 Bk mass ratio of their sample for a period of ten months within the limits of analysis. T _{1/2} (β ⁻)>1×10 ⁴ y was deduced by 1965Mi08 from nonobservation of 248 Cf α activities. | | 0.0+x | 1(-) | 23.7 h 2 | | $%β^-=70.5; %ε=30.5$ The ratio of ε decay/ $β^-$ decay was determined by 1978Gr10 from measured I(Curium K x ray from ε decay)/I(550.7 $γ$ from $β^-$ decay)= 4.25 28 and I(550.7 $γ$)=7.1 5 per 100 $β^-$ decays. E(level): Q($β^-$)=860 20 measured by 1978Gr10, compared with the systematics value of 841 71 from 2012Wa38, suggests that E(level)=20 +74-20. T _{1/2} : from 1978Gr10. Others: 16 h 3 (1956Ch77), and 23 h 5 (1956Hu27). J ^π : log ft=7.6 to 2 ⁺ and 7.1 to 0 ⁺ In ε decay (7.6 to 2 ⁺ and 7.8 to 0 ⁺ In $β^-$ decay) give J=1. Probable configuration of $π7/2$ [633]⊗ $ν9/2$ [734] gives $π=-$. | | 0.0+y [†] | (6+) | | A | E(level): $Q(\alpha)(^{252}Es)=6739\ 3$ from $E\alpha=6632\ 3$, and $Q(\alpha)=6789\ 50$ from systematics As given In 2012Wa38, suggest that this level lies within 100 keV of the g.s J ^{\pi} : from the ratio of energy spacings, K=6 was assigned by 1973Fi06 for the rotational band based on this level, and a $\pi 3/2[521] \otimes \nu 9/2[734]$ configuration was proposed. The α hindrance factor for the α transition from ^{252}Es is consistent with this configuration. | | $70.65 + y^{\dagger} 5$ | (7 ⁺) | | A | J^{π} : E2 γ to 6 ⁺ . Member of the K^{π} =6 ⁺ band. The α hindrance factor is consistent with this assignment. | | 136+y 7 | (8-) | | A | J^{π} : E1 γ to (7 ⁺). No γ to (6 ⁺). J^{π} : 1973Fi06 suggest the configuration $K^{\pi}=8^{-}$, $\pi7/2$ [633] $\otimes \nu9/2$ [734]; however, this configuration is not consistent with the α hindrance factor of 2710. The transition would require changes in both the neutron and proton orbitals, and hindrance factors for such transitions are typically much larger. | | 145+y 3 | | | A | | | 151.3+y [†] <i>I</i> | (8+) | | A | J^{π} : γ' s to (6^+) and (7^+) . Member of the $K^{\pi}=6^+$ band. The α hindrance factor is consistent with this assignment. | | 171.5+y 8 | (4-,5-,6-) | | A | J^{π} : 418.5 γ from (5 ⁻) state is M1. The authors of 1973Fi06 propose J^{π} =4 ⁻ . Although a probable configuration of K=4, π 3/2[521] \otimes ν 5/2[622] is consistent | ## Adopted Levels, Gammas (continued) # ²⁴⁸Bk Levels (continued) | E(level) | J^{π} | XREF | Comments | | | | |------------------------|---|------|---|--|--|--| | | | | with the M1 transition from the 5 ⁻ , $\pi 3/2[521] \otimes v7/2[613]$ state, the hindrance factor for the α from ²⁵² Es is not. One would expect the HF to be about a factor of hundred less than the experimental value of 2250. | | | | | 179+y <i>3</i> | | Α | | | | | | 212.6+y 8 | (4 ⁻ ,5 ⁻ ,6 ⁻) | A | J^{π} : 377.4 γ from (5 ⁻) state is M1. The authors of 1973Fi06 propose that it may be the J^{π} =5 ⁻ member of a band based on the 171.5+Y level. | | | | | 262+y 6 | | Α | | | | | | 339+y 6 | | A | | | | | | 373+y 5 | | A | | | | | | 399.7+y <i>3</i> | (5^+) | Α | J^{π} : M1 γ to (6 ⁺) but not to (7 ⁺) or (8 ⁺) members of the proposed $K^{\pi}=6^+$ band. | | | | | 424+y 6 | | Α | | | | | | 458+y 6 | | Α | | | | | | 483+y 6 | | Α | | | | | | 529.1+y 7 | | Α | | | | | | 590.0+y [‡] 7 | (5 ⁻) | A | J^{π} : HF=5.1 from (5 ⁻) suggests probable configuration $\pi 3/2[521] \otimes \nu 7/2[613]$, the same as that of the ²⁵² Es g.s. | | | | | 624+y [#] 5 | (7 ⁺) | A | J^{π} : A $K^{\pi}=7^+$, $\pi7/2[633] \otimes \nu7/2[613]$ configuration is suggested by 1973Fi06. The α hindrance factor is consistent with this assignment. | | | | | 657+y [‡] 5 | (6-) | A | J^{π} : The energy spacing and the α hindrance factor suggest that the level is the 6^- member of the $K^{\pi}=5^-$ band built on the 590.0+Y level. | | | | | 700+y [#] 5 | (8 ⁺) | A | J^{π} : The energy spacing and the α hindrance factor suggest that the level is the 8^+ member of a rotational band built on the 624+Y level. | | | | [†] Band(A): $K^{\pi}=6^+$, $\pi 3/2[521] \otimes \nu 9/2[734]$ band. ‡ Band(B): $K^{\pi}=5^-$, $\pi 3/2[521] \otimes \nu 7/2[613]$ band. # Band(C): $K^{\pi}=7^+$, $\pi 7/2[633] \otimes \nu 7/2[613]$ band. # $\gamma(^{248}{\rm Bk})$ All data are from 252 Es α decay. | $E_i(level)$ | \mathbf{J}_i^{π} | E_{γ} | I_{γ} | \mathbb{E}_f | \mathbf{J}_f^{π} | Mult. | δ | α^{\dagger} | |--------------|----------------------|----------------|--------------|----------------|----------------------|-------|--------------|--------------------| | 70.65+y | $\overline{(7^+)}$ | 70.65 5 | | 0.0+y | (6 ⁺) | E2 | | 104.5 15 | | 136+y | (8^{-}) | 64.42 5 | | 70.65 + y | (7^{+}) | E1 | | 0.450 7 | | 151.3+y | (8^{+}) | 80.7 <i>1</i> | 44 8 | 70.65+y | (7^{+}) | M1+E2 | 1.4 + 14 - 4 | 43 8 | | | | 151.3 <i>I</i> | 100 10 | 0.0 + y | (6^+) | [E2] | | 3.26 5 | | 373+y | | 193.5 <i>1</i> | 100 12 | 179+y | | M1 | | 5.33 8 | | | | 228.0 4 | 53 9 | 145+y | | M1 | | 3.36 5 | | 399.7+y | (5^{+}) | 399.7 <i>3</i> | | 0.0 + y | (6^+) | M1 | | 0.709 10 | | 529.1+y | | 529.1 7 | | 0.0+y | (6^+) | | | | | 590.0+y | (5^{-}) | 377.4 <i>3</i> | 55 7 | 212.6+y | $(4^-,5^-,6^-)$ | M1 | | 0.830 12 | | • | | 418.5 <i>3</i> | 100 10 | 171.5+y | $(4^-,5^-,6^-)$ | M1 | | 0.625 9 | | | | 590.0 7 | 38 4 | 0.0+y | (6 ⁺) | [E1] | | 0.0116 2 | $^{^\}dagger$ Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified. ## **Adopted Levels, Gammas** ## **Adopted Levels, Gammas** Band(C): $K^{\pi}=7^{+}$, $\pi 7/2[633] \otimes v 7/2[613]$ band (8⁺) 700+y Band(B): $K^{\pi}=5^{-}$, $\pi 3/2[521] \otimes \nu 7/2[613]$ band (6⁻) 657+y (7⁺) 624+y $$^{248}_{\ 97}\mathrm{Bk}_{151}$$