Adopted Levels, Gammas

Type	Author	History Citation	Literature Cutoff Date		
Full Evaluation	M. J. Martin	NDS 122, 377 (2014)	1-Sep-2014		

 $Q(\beta^-)$ =841 SY; S(n)=5481 SY; S(p)=4743 SY; $Q(\alpha)$ =5775 SY The systematics uncertainty is 71 keV for all four entries.

2012Wa38

²⁴⁸Bk Levels

Cross Reference (XREF) Flags

A 252 Es α decay

				A 252 Es α decay
E(level)	\mathbf{J}^{π}	T _{1/2}	XREF	Comments
0.0+z	(6+,8-)	>9 y		Assignment: 246 Cm(α ,pn) chem, ms (1965Mi08). J ^{π} : the odd proton may be in the 7/2[633] Nilsson state in analogy to 249 Bk, and the odd neutron in the 9/2[734] state in analogy to 247 Cm and 249 Cf. The Gallagher-Moszkowski rule predicts the parallel coupled 8 ⁻ state to be lower in energy than the 1 ⁻ member of the doublet. The long-lived state might be the 8 ⁻ member of this doublet. However, it is also possible that this may be the (6 ⁺) level At E=0.0+Y fed In α decay of 252 Es rather than the 8 ⁻ level proposed by 1973Fi06. An assignment of either 6 ⁺ or 8 ⁻ is consistent with the absence of any β ⁻ decay to 248 Cf. T _{1/2} : deduced by 1965Mi08 from observation of no change in 248 Bk/ 247 Bk mass ratio of their sample for a period of ten months within the limits of analysis. T _{1/2} (β ⁻)>1×10 ⁴ y was deduced by 1965Mi08 from nonobservation of 248 Cf α activities.
0.0+x	1(-)	23.7 h 2		$%β^-=70.5; %ε=30.5$ The ratio of ε decay/ $β^-$ decay was determined by 1978Gr10 from measured I(Curium K x ray from ε decay)/I(550.7 $γ$ from $β^-$ decay)= 4.25 28 and I(550.7 $γ$)=7.1 5 per 100 $β^-$ decays. E(level): Q($β^-$)=860 20 measured by 1978Gr10, compared with the systematics value of 841 71 from 2012Wa38, suggests that E(level)=20 +74-20. T _{1/2} : from 1978Gr10. Others: 16 h 3 (1956Ch77), and 23 h 5 (1956Hu27). J ^π : log ft=7.6 to 2 ⁺ and 7.1 to 0 ⁺ In ε decay (7.6 to 2 ⁺ and 7.8 to 0 ⁺ In $β^-$ decay) give J=1. Probable configuration of $π7/2$ [633]⊗ $ν9/2$ [734] gives $π=-$.
0.0+y [†]	(6+)		A	E(level): $Q(\alpha)(^{252}Es)=6739\ 3$ from $E\alpha=6632\ 3$, and $Q(\alpha)=6789\ 50$ from systematics As given In 2012Wa38, suggest that this level lies within 100 keV of the g.s J ^{\pi} : from the ratio of energy spacings, K=6 was assigned by 1973Fi06 for the rotational band based on this level, and a $\pi 3/2[521] \otimes \nu 9/2[734]$ configuration was proposed. The α hindrance factor for the α transition from ^{252}Es is consistent with this configuration.
$70.65 + y^{\dagger} 5$	(7 ⁺)		A	J^{π} : E2 γ to 6 ⁺ . Member of the K^{π} =6 ⁺ band. The α hindrance factor is consistent with this assignment.
136+y 7	(8-)		A	J^{π} : E1 γ to (7 ⁺). No γ to (6 ⁺). J^{π} : 1973Fi06 suggest the configuration $K^{\pi}=8^{-}$, $\pi7/2$ [633] $\otimes \nu9/2$ [734]; however, this configuration is not consistent with the α hindrance factor of 2710. The transition would require changes in both the neutron and proton orbitals, and hindrance factors for such transitions are typically much larger.
145+y 3			A	
151.3+y [†] <i>I</i>	(8+)		A	J^{π} : γ' s to (6^+) and (7^+) . Member of the $K^{\pi}=6^+$ band. The α hindrance factor is consistent with this assignment.
171.5+y 8	(4-,5-,6-)		A	J^{π} : 418.5 γ from (5 ⁻) state is M1. The authors of 1973Fi06 propose J^{π} =4 ⁻ . Although a probable configuration of K=4, π 3/2[521] \otimes ν 5/2[622] is consistent

Adopted Levels, Gammas (continued)

²⁴⁸Bk Levels (continued)

E(level)	J^{π}	XREF	Comments			
			with the M1 transition from the 5 ⁻ , $\pi 3/2[521] \otimes v7/2[613]$ state, the hindrance factor for the α from ²⁵² Es is not. One would expect the HF to be about a factor of hundred less than the experimental value of 2250.			
179+y <i>3</i>		Α				
212.6+y 8	(4 ⁻ ,5 ⁻ ,6 ⁻)	A	J^{π} : 377.4 γ from (5 ⁻) state is M1. The authors of 1973Fi06 propose that it may be the J^{π} =5 ⁻ member of a band based on the 171.5+Y level.			
262+y 6		Α				
339+y 6		A				
373+y 5		A				
399.7+y <i>3</i>	(5^+)	Α	J^{π} : M1 γ to (6 ⁺) but not to (7 ⁺) or (8 ⁺) members of the proposed $K^{\pi}=6^+$ band.			
424+y 6		Α				
458+y 6		Α				
483+y 6		Α				
529.1+y 7		Α				
590.0+y [‡] 7	(5 ⁻)	A	J^{π} : HF=5.1 from (5 ⁻) suggests probable configuration $\pi 3/2[521] \otimes \nu 7/2[613]$, the same as that of the ²⁵² Es g.s.			
624+y [#] 5	(7 ⁺)	A	J^{π} : A $K^{\pi}=7^+$, $\pi7/2[633] \otimes \nu7/2[613]$ configuration is suggested by 1973Fi06. The α hindrance factor is consistent with this assignment.			
657+y [‡] 5	(6-)	A	J^{π} : The energy spacing and the α hindrance factor suggest that the level is the 6^- member of the $K^{\pi}=5^-$ band built on the 590.0+Y level.			
700+y [#] 5	(8 ⁺)	A	J^{π} : The energy spacing and the α hindrance factor suggest that the level is the 8^+ member of a rotational band built on the 624+Y level.			

[†] Band(A): $K^{\pi}=6^+$, $\pi 3/2[521] \otimes \nu 9/2[734]$ band. ‡ Band(B): $K^{\pi}=5^-$, $\pi 3/2[521] \otimes \nu 7/2[613]$ band. # Band(C): $K^{\pi}=7^+$, $\pi 7/2[633] \otimes \nu 7/2[613]$ band.

$\gamma(^{248}{\rm Bk})$

All data are from 252 Es α decay.

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}	I_{γ}	\mathbb{E}_f	\mathbf{J}_f^{π}	Mult.	δ	α^{\dagger}
70.65+y	$\overline{(7^+)}$	70.65 5		0.0+y	(6 ⁺)	E2		104.5 15
136+y	(8^{-})	64.42 5		70.65 + y	(7^{+})	E1		0.450 7
151.3+y	(8^{+})	80.7 <i>1</i>	44 8	70.65+y	(7^{+})	M1+E2	1.4 + 14 - 4	43 8
		151.3 <i>I</i>	100 10	0.0 + y	(6^+)	[E2]		3.26 5
373+y		193.5 <i>1</i>	100 12	179+y		M1		5.33 8
		228.0 4	53 9	145+y		M1		3.36 5
399.7+y	(5^{+})	399.7 <i>3</i>		0.0 + y	(6^+)	M1		0.709 10
529.1+y		529.1 7		0.0+y	(6^+)			
590.0+y	(5^{-})	377.4 <i>3</i>	55 7	212.6+y	$(4^-,5^-,6^-)$	M1		0.830 12
•		418.5 <i>3</i>	100 10	171.5+y	$(4^-,5^-,6^-)$	M1		0.625 9
		590.0 7	38 4	0.0+y	(6 ⁺)	[E1]		0.0116 2

 $^{^\}dagger$ Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

Adopted Levels, Gammas

Adopted Levels, Gammas

Band(C): $K^{\pi}=7^{+}$, $\pi 7/2[633] \otimes v 7/2[613]$ band

(8⁺) 700+y

Band(B): $K^{\pi}=5^{-}$, $\pi 3/2[521] \otimes \nu 7/2[613]$ band

(6⁻) 657+y

(7⁺) 624+y

$$^{248}_{\ 97}\mathrm{Bk}_{151}$$