Adopted Levels

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	M. J. Martin	NDS 122, 377 (2014)	1-Sep-2014

 $Q(\beta^{-})=3170 SY; S(n)=4660 SY; S(p)=5830 SY; Q(\alpha)=4940 SY 2012Wa38$

The systematics uncertainties are 200, 230, 280, and 360 for $Q(\beta^{-})$, S(n), S(p), and $Q(\alpha)$, respectively.

Other than an update to the Q values, there are No new data on ²⁴⁸Am since the 1999 Nuclear Data Sheets, 1999Ak02.

²⁴⁸Am Levels

E(level)	Comments	
(0.0)	²⁴⁸ Am has not been observed.	
	The systematics of orbitals for this region (see, for example, 1972E121) suggests that the 153^{rd} neutron is probably in the	

1/2[620] Nilsson orbital, and the 95th proton is in either the 5/2[523] or the 5/2[642] orbital. $T_{1/2}$: $T_{1/2}(\beta^-)$: A partial half-life for β decay was calculated by 1973Ta30 using β decay gross theory as >700 s. Calculations of 1997Mo25 yield >100 s. From systematics, 2012Au07 report ≈180 s.

Calculations of 1997Mo25 yield >100 s. From systematics, 2012Au07 report ≈180 s. A partial α half-life, of 1×10¹¹ d – 4×10¹¹ d is calculated by the evaluator for an unhindered (unobserved)≈4600-keV α to a level with the same configuration as that of the ²⁴⁸Am g.s.; the energy of this level is expected at about 250-350 keV above the ²⁴⁴Np g.s. (with configuration π 5/2[642], ν 9/2[734]). The excitation energy of this level is estimated from 1/2[620] state energies in ²⁴⁵Pu (305 keV) and in ²⁴⁷Cm (403.6 keV). The energy differences between the 1/2[620] and the 9/2[734] neutron orbitals are 223 keV in ²⁴³Pu, 403.6 keV in ²⁴⁷Cm and 434.4 keV in ²⁴⁹Cf. The α energy of ≈4600 keV is calculated from Q(α)(²⁴⁸Am)=4940, a systematics value from 2012Wa38.