Adopted Levels | | | History | | |-----------------|----------------|---------------------|------------------------| | Type | Author | Citation | Literature Cutoff Date | | Full Evaluation | C. D. Nesaraia | NDS 125, 395 (2015) | 31-Mar-2014 | $Q(\beta^-)=1950 \text{ SY}; S(n)=4360 \text{ SY}; Q(\alpha)=4280 \text{ SY}$ 2012Wa38 $\Delta Q(\beta^-)=220, \Delta S(n)=200, \Delta Q(\alpha)=450 \text{ (syst, 2012Wa38)}.$ ### Identification: 1983Po16,1983Po14: Pu irradiated with neutron followed by chemical extraction and measured by semiconductor γ spectrometry. #### Theoretical studies: 2002Du16: Calculated partial half-lives for α and cluster decays. 2005Pa73: Calculated neutron one-quasiparticle states of heaviest nuclei within a macroscopic-microscopic approach. 1997Mo25: Calculated ground-state binding energy, proton and neutron pairing gaps, neutron and proton separation energies, Q values and partial half-lives for α and β decays. 1995Mo29: Calculated ground-state masses and nuclear ground-state deformations. 1981Mo24: Calculated ground-state electric multipole moments Q2, Q4 and masses. 1980Ho32: Calculated mass excess, S(n), S(p), $Q(\beta)$, $Q(\alpha)$, fission-barrier heights, deformation and energy at saddle-point. #### Systematic studies: 2011Ad15: Behavior of low-lying one-quasiparticle states studied in the isotonic chain N=147, 149, 151, 153, and 155 within the microscopic-macroscopic TCSM and self-consistent SHFB approaches. Comparison of calculated low-lying one-quasineutron states in ²⁴⁷Pu with available experimental data of ²⁴⁹Cm shows a rather good agreement. # ²⁴⁷Pu Levels E(level) J^{π} $T_{1/2}$ Comments 0.0 $(1/2^{+})$ 2.27 d 23 $%\beta^{-}$ =100 β^{-} decay has been inferred through ²⁴⁷Am activity. Direct β^{-} decay scheme of ²⁴⁷Pu to ²⁴⁷Am was not studied. $T_{1/2}$: Measured by 1983Po14 (see also 1983Po16) from the increase in the intensity of the 226-and 285-keV γ 's in ²⁴⁷Am β^{-} decay. J^{π} : In analogy to ²⁴⁹Cm, ²⁵¹Cf and ²⁵³Fm isotones, J^{π} (g.s.) is probably 1/2⁺ of the 1/2[620] orbital.