247 Am β^- decay 1967Or02,1968Fi03

History							
Туре	Author	Citation	Literature Cutoff Date				
Full Evaluation	C. D. Nesaraja	NDS 125, 395 (2015)	31-Mar-2014				

Parent: ²⁴⁷Am: E=0.0; J^{π} =(5/2); $T_{1/2}$ =23.0 min 13; $Q(\beta^{-})$ =1620 SY; % β^{-} decay=100.0

 247 Am-T_{1/2}: From Adopted Levels of 247 Am.

²⁴⁷Am-Q(β⁻): 1620 100 (syst, 2012Wa38).

1991Po17: Gamma emission of actinides isotopes.

1968Fi03: ²⁴⁷Am produced by 42-MeV α on ²⁴⁴Pu at the Argonne 60-inch cyclotron. Chemical purification was followed by evaporation on a quartz plate. Gammas were then measured with a Ge(Li) detector through a thick copper detector to reduce β -particle background.

1967Or02: ²⁴⁷Am produced by 28-MeV α on ²⁴⁴Pu at the Los Alamos variable-energy cyclotron. Chemical purification was followed by evaporation on teflon film. Following β decay of ²⁴⁷Am, γ 's were measured with a Ge(Li) detector and the electron spectrum was measured with a Si(Li) detector.

²⁴⁷Cm Levels

E(level) [†]	J^{π}	T _{1/2}	Comments			
0.0	9/2-	1.56×10 ⁷ y 5	T _{1/2} : From Adopted Level.			
(61.67 4)	$11/2^{-}$					
227.38 19	$5/2^{+}$	26.3 μs 3	$T_{1/2}$: From Adopted Levels. Others: 24 μ s (1967Or02), 20 μ s 4 (1968Fi03).			
285.41 5	$(7/2^+)$					

[†] From Adopted Level.

β^{-} radiations

 $I(\beta)$'s were deduced from intensity balance. Since the decay scheme is incomplete, $I(\beta^{-})$'s given should be taken as approximate.

E(decay)	E(level)	$I\beta^{-\dagger}$	Log ft	Comments
(1334 <i>SY</i>)	285.41	63 19	≈6.22	av Eβ≈443
(1392 <i>SY</i>)	227.38	31 <i>21</i>	≈6.6	av $E\beta \approx 465$
(1620 [‡] SY)	0.0	<6	$> 8.4^{1u}$	av E <i>β</i> ≈522
				If $J^{\pi}(^{247} \text{Am g.s.}) = 5/2^+$ and $\log^{4u} t > 8.5$ for the β to g.s. $I(\beta^-)$ to g.s. $< 6\%$

[†] Absolute intensity per 100 decays.

[‡] Existence of this branch is questionable.

 $\gamma(^{247}\text{Cm})$

Iγ normalization: The normalization factor to convert the relative photon intensities to absolute intensities is obtained as 0.25 which is an average of NR=0.26 assuming Iβ to g.s.=0 with $[I\gamma(226)(1+\alpha)+I\gamma(285)(1+\alpha)+I\gamma(61.67)(1+\alpha)]=100\%$ and NR≥0.24 when Iβ to g.s.<6 % by requiring $\log f^{1u}t>8.5$ with $[I\gamma(226)(1+\alpha)+I\gamma(285)(1+\alpha)+I\gamma(61.67)(1+\alpha)]\ge94\%$ The decay scheme should, however, be considered to be incomplete.

Eγ	I_{γ}^{a}	E_i (level)	\mathbf{J}_i^π	E_f	\mathbf{J}_f^{π}	Mult. [#]	δ#	α &	Comments
(58.03 [@] 5)	2.1 [‡] 5	285.41	$(7/2^+)$	227.38	5/2+	(M1+E2)	0.49 19	7.×10 ¹ 3	$\alpha(L)=55\ 19;\ \alpha(M)=15\ 6$ $\alpha(N)=4\ 1\ 15;\ \alpha(O)=1\ 0\ 4;\ \alpha(P)=0\ 18\ 6;\ \alpha(O)=0\ 0053\ 6$
(61.67 5)	0.33 9	(61.67)	11/2-	0.0	9/2-	M1+E2	0.26 +12-16	38 10	$\alpha(L)=28.7; \alpha(M)=7.2.21$ $\alpha(N)=2.06; \alpha(Q)=0.50.14; \alpha(P)=0.093.22; \alpha(Q)=0.0049$ β I_{γ} : Calculated by the evaluator from intensity balance at the 61.67-keV level.
(165.70 [@] 5)	0.41 [‡] 4	227.38	5/2+	61.67?	11/2-	E3		30.4	α (K)=0.235 4; α (L)=21.3 3; α (M)=6.47 10 α (N)=1.83 3; α (O)=0.445 7; α (P)=0.0750 11; α (Q)=0.000469 7
226 2	23 [†] 3	227.38	5/2+	0.0	9/2-	M2+E3	0.56 17	10.4 7	$\alpha(K)=5.9 \; g; \; \alpha(L)=3.26 \; 20; \; \alpha(M)=0.90 \; 7$ $\alpha(N)=0.252 \; 19; \; \alpha(O)=0.063 \; 5; \; \alpha(P)=0.0117 \; 7;$ $\alpha(Q)=0.00056 \; 7$ $I\gamma(226) \text{ relative to } 285\gamma=25 \; 7 \text{ was measured by}$ 1967Or02. $\alpha(K)\exp=6 \; 3 \; \text{estimated from comparison of ce and } \gamma.$ $\alpha(K)\exp=6 \; 5 \; \text{in} \; {}^{251}\text{Cf} \; \alpha \; \text{decay} \; (2003\text{Ah07}).$
285 2	100 [†] <i>10</i>	285.41	(7/2+)	0.0	9/2-	[E1]		0.0486 11	α(K)=0.0381 8; α(L)=0.00789 17; α(M)=0.00193 5 α(N)=0.000525 12; α(O)=0.000131 3; α(P)=2.44×10-5 6; α(Q)=1.35×10-6 3 From nonobservation of ce lines for 285γ, 1967Or02 suggest that 285γ is probably E1 or E2.

[†] Relative photon intensity measured by 1991Po17.

[‡] Calculated by the evaluator from adopted relative branching.

[#] From Adopted Gammas.

 \mathbf{N}

[@] Transition was not observed in ²⁴⁷Am β^- decay; energy is from Adopted Gammas.

[&] Additional information 1.

^{*a*} For absolute intensity per 100 decays, multiply by ≈ 0.25 .

²⁴⁷Am β^- decay 1967Or02,1968Fi03

