²⁵¹Fm α decay 1973Ah02

History										
Туре	Author	Citation	Literature Cutoff Date							
Full Evaluation	C. D. Nesaraja	NDS 125, 395 (2015)	31-Mar-2014							

Parent: ²⁵¹Fm: E=0.0; $J^{\pi}=(9/2^{-})$; $T_{1/2}=5.30$ h 8; $Q(\alpha)=7425.1$ 20; % α decay=1.80 13

 251 Fm-J^{π},T_{1/2}: From Adopted Levels in 251 Fm (2013Br09).

²⁵¹Fm-Q(α): From 2012Wa38.

1973Ah02: ²⁵¹Fm was produced by bombarding 32-MeV α on ²⁴⁹Cf The α -particle decay was measured with the Argonne magnetic alpha spectrometer (FWHM=5 keV) and 14 position-sensitive Au-Si surface barrier detectors. γ -rays associated with the α decay was identified by α - γ coincidence measurements for which the γ 's were detected with a Ge(Li)diode.

²⁴⁷Cf Levels

E(level)	J^{π}	T _{1/2}	Comments
0.0 [†]	$(7/2^+)$	3.11 h <i>3</i>	$T_{1/2}$: From α decay measurement of ²⁴⁷ Cf (1984Ah02).
55.00 [†] 11	$(9/2^+)$		
122.09 [†] 11	$(11/2^+)$		
201.0^{\dagger} 4	$(13/2^+)$		
383.2 [‡] 3	$(5/2^+)$		
427.2 [‡] 4	$(7/2^+)$		
480.40 [#] 9	(9/2 ⁻)		
531.99 [#] 21	$(11/2^{-})$		
551.0 [‡] 10	$(11/2^+)$		
595 [#] 4	$(13/2^{-})$		
634 [‡] 5	$(13/2^+)$		
678.0 [@] 6	$(7/2^{-})$		
738.0 [@] 8	(9/2 ⁻)		
† Dered(A)	. 7/0[(04]]	hand manh	

[†] Band(A): 7/2[624] band member.

 \pm Band(B): 5/2[622] band member.

[#] Band(C): 9/2[734] band member.

[@] Band(D): 7/2[743] band member.

α radiations

 α branching was deduced by 1978Ah02 as 1.80% 13 from measured Einsteinium K x-ray/ α ratio of 40 2 and estimated Einsteinium K x-ray intensity of 0.733 39 per ε decay.

$E\alpha^{\dagger}$	E(level)	$I\alpha^{\ddagger@}$	HF [#]	$E\alpha^{\dagger}$	E(level)	Ια ^{‡@}	HF [#]
6580 <i>3</i>	738.0	0.26 4	39 7	6886 2	427.2	1.7 <i>1</i>	141 14
6639 <i>3</i>	678.0	0.56 6	34 5	6929 <i>2</i>	383.2	1.8 <i>1</i>	204 20
6682 4	634	0.07 3	4.3×10 ² 19	7107 5	201.0	≈0.05	≈41638
6721 <i>3</i>	595	0.44 4	102 13	7185 <i>3</i>	122.09	0.29 3	1.49×10 ⁴ 20
6763 <i>3</i>	551.0	0.38 6	184 <i>33</i>	7252 <i>3</i>	55.00	0.93 8	8.5×10 ³ 10
6783 2	531.99	4.8 2	17.6 16	7306 <i>3</i>	0.0	1.5 1	8.69×10 ³ 88
6834 <i>2</i>	480.40	87.09	1.63 <i>13</i>				

[†] From 1973Ah02. The original energies have been increased by 1 keV, as recommended by 1991Ry01, due to change in

Continued on next page (footnotes at end of table)

 $^{251}{\rm Fm}~\alpha$ decay 1973Ah02 (continued)

 α radiations (continued)

calibration energy.

- [‡] Intensity per 100 α decays measured by 1973Ah02. [#] $r_0(^{247}Cf)=1.4725$ 55, unweighted average of $r_0(^{248}Cf)=1.4670$ 8 and $r_0(^{246}Cf)=1.478$ 14 (1998Ak04), is used in the calculations of HF. ^(e) For absolute intensity per 100 decays, multiply by 0.0180 *13*.