²⁴⁷Cf ε decay 1979Ah03

History						
Type	Author	Citation	Literature Cutoff Date			
Full Evaluation	C. D. Nesaraja	NDS 125, 395 (2015)	31-Mar-2014			

Parent: 247 Cf: E=0.0; J^{π} =(7/2+); $T_{1/2}$ =3.11 h 3; $Q(\varepsilon)$ =613 16; % ε decay=99.965 5

1977Ah01: Experimental evidence for the identification of the deformed proton orbital 1/2[521].

²⁴⁷Bk Levels

E(level)	J^{π}	T _{1/2}
0.0‡	3/2-	1380 y <i>250</i>
29.88 [‡] 11	$(5/2^{-})$	
40.81 [#] <i>11</i>	7/2+	
71.60 [‡] <i>13</i>	$(7/2^{-})$	
82.81 [#] 23	$(9/2)^+$	
125.5 [‡] 4	$(9/2^{-})$	
334.92 [@] 12	$(5/2)^+$	
378.1? [@] 6	$(7/2^+)$	
447.80 <mark>&</mark> 9	$(5/2^{-})$	
489.4 <mark>&</mark> <i>3</i>	$(7/2^{-})$	

[†] From Adopted Levels.

ε radiations

E(decay)	E(level)	$\mathrm{I}arepsilon^{\dagger \ddagger}$	Log ft	Comments
(124 16)	489.4	0.032 7	6.99 18	εL=0.667 14; εM+=0.333 15
(165 16)	447.80	1.60 16	5.65 16	ε K=0.16 <i>10</i> ; ε L=0.58 <i>6</i> ; ε M+=0.26 <i>4</i>
(235 [#] <i>16</i>)	378.1?			
(278 16)	334.92	2.7 3	6.18 <i>10</i>	ε K=0.53 3; ε L=0.335 18; ε M+=0.136 9
(488 [#] <i>16</i>)	125.5			
(530 16)	82.81	21 3	6.05 7	ε K=0.680 4; ε L=0.232 3; ε M+=0.0880 13
				I ε : Total ε feeding to the 82.81-, and 125.5-keV levels.
(541 [#] <i>16</i>)	71.60			
(572 16)	40.81	74 12	5.58 8	ε K=0.689 4; ε L=0.2258 23; ε M+=0.0852 11
	•••			I ε : Total ε feeding to the 29.88-, 40.81-, and 71.60-keV levels.
(583 16)	29.88			

[†] Electron-capture intensity per 100 ε decay, deduced from intensity balance at each level.

 $^{^{247}}$ Cf-J^{π},T_{1/2}: From Adopted Levels in 247 Cf.

 $^{^{247}}$ Cf-Q(ε): From 2012Wa38.

¹⁹⁷⁹Ah03: 247 Cf produced by irradiating 246 Cm with 40-MeV α -particle at the Argonne cyclotron. Chemical separation of the product was followed by isotope separation. γ spectra were measured with a Ge(Li) detector. Cd, Cu and Al absorbers were used to reduce summing-effect interference from intense Bk K x-rays. The electron spectra was measured with a cooled Si(Li) spectrometer with FWHM at 100 keV=1.0 keV.

[‡] Band(A): 3/2[521] band.

[#] Band(B): 7/2[633] band.

[®] Band(C): 5/2[642] band.

[&]amp; Band(D): 5/2[523] band.

 247 Cf ε decay 1979Ah03 (continued)

 ε radiations (continued)

 $^{^{\}ddagger}$ For absolute intensity per 100 decays, multiply by 1.00635 5. $^{\sharp}$ Existence of this branch is questionable.