²⁴⁶Bk ε + β ⁺ decay 1976Ah03

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	C. D. Nesaraja	NDS 198,449 (2024)	31-Jul-2022

Parent: ²⁴⁶Bk: E=0.0+x; $J^{\pi}=2^{(-)}$; $T_{1/2}=1.80 \text{ d } 2$; $Q(\varepsilon)=1350 \ 60$; $\%\varepsilon+\%\beta^+$ decay=100 ²⁴⁶Bk-Q(ε): From 2021Wa16.

1976Ah03: ²⁴⁶Bk was produced from the irradiation of ²⁴³Am with 34 MeV α particles at the Argonne 152 cm cyclotron. The chemically mass separated ²⁴⁶Bk was then processed into a thin source. The electron capture decay of ²⁴⁶Bk was investigated by measuring the gamma-rays and conversion-electron spectra with Ge(Li) and Si(Li) detectors, respectively. Measured T_{1/2} of ²⁴⁶Bk,

E γ , I γ , E(ce), Ice, ce γ -coin, Deduced levels, multipolarity, J^{π} and log*ft*. See earlier report: 1966Ah02.

Other: 1966Or01.

Using program RadiationReport, the evaluator has calculated from the decay scheme, x-ray intensities as follows: $K\alpha_2 \times ray=19.7$ 24, $K\alpha_1 \times ray=30.9$ 38, $K\beta_{12} \times ray=15.6$ 19. These values are compared with experimental results (1976Ah03) of $K\alpha_2 \times ray=19.0$ 13, $K\alpha_1 \times ray=29.0$ 2, and ($K\beta_1 \times ray=11.0$ 8 + $K\beta_2 \times ray=4.0$ 3)= 15.0 8. This agreement confirms the quality of the data and the consistency of the decay scheme.

²⁴⁶Cm Levels

$J^{\pi \dagger}$	T _{1/2} †
0^{+}	4706 y <i>40</i>
2^{+}	123.2 ps 23
4+	
2-	
3-	
1-	
2^{-}	
2^{+}	
3-	
3+	
	$ \frac{J^{\pi^{\dagger}}}{0^{+}} \\ \frac{2^{+}}{2^{+}} \\ \frac{4^{+}}{2^{-}} \\ \frac{3^{-}}{1^{-}} \\ \frac{2^{-}}{2^{+}} \\ \frac{3^{-}}{3^{+}} \\ \frac{3^{+}}{2^{+}} \\ \frac{3^{-}}{3^{+}} \\ \frac{3^{+}}{2^{+}} \\ \frac{3^{-}}{3^{+}} \\ \frac{3^{+}}{2^{+}} \\ 3^{$

[†] From Adopted Levels.

[‡] Deduced by the evaluator from least-squares fit to $E\gamma$ data.

ε, β^+ radiations

E(decay)	E(level)	$\mathrm{I}\varepsilon^{\dagger\ddagger}$	Log ft	Comments
$(1.9 \times 10^2 6)$	1165.49	0.55 11	7.4 6	εK=0.3 3; εL=0.49 18; εM+=0.21 12
$(2.2 \times 10^2 6)$	1128.09	0.27 5	8.0 5	εK=0.4 3; εL=0.40 18; εM+=0.17 10
$(2.3 \times 10^2 6)$	1124.28	10.8 9	6.4 5	εK=0.4 3; εL=0.39 17; εM+=0.16 9
$(2.5 \times 10^2 6)$	1104.85	2.97 29	7.1 4	εK=0.49 20; εL=0.36 13; εM+=0.15 7
$(2.7 \times 10^2 6)$	1078.83	5.6 5	6.9 4	εK=0.53 14; εL=0.33 9; εM+=0.13 5
$(4.7 \times 10^2 6)$	876.36	21.5 22	7.03 16	εK=0.673 22; εL=0.237 16; εM+=0.090 7
$(5.1 \times 10^2 6)$	841.55	50 6	6.74 15	εK=0.682 18; εL=0.231 13; εM+=0.087 6
$(1.21 \times 10^3 6)$	142.06	≤0.56	$\geq 10.2^{1u}$	εK=0.704 5; εL=0.215 4; εM+=0.0804 16
$(1.31 \times 10^3 6)$	42.85	≈7.5	≈8.5	εK=0.7484 17; εL=0.1850 12; εM+=0.0666 6
$(1.35 \times 10^3 6)$	0.0	≤3	$\geq 9.7^{1u}$	εK=0.714 4; εL=0.209 3; εM+=0.0774 12
				Iε: −6 % 9 deduced by the evaluator from I(K x ray), Q(ε), ε branchings, theoretical K/ε ratios of the proposed level scheme and the experimental K-shell fluorescence yield ω =0.976 (1976Ah03). Negative feeding −9 % 10 was also deduced by 1976Ah03. A limit of Iε≤3 is given by the evaluator.

Continued on next page (footnotes at end of table)

$^{246}{\rm Bk}\;\varepsilon{\rm +}\beta^{\rm +}\;{\rm decay}$ 1976Ah03 (continued)

ε, β^+ radiations (continued)

[†] From level scheme intensity balance, unless otherwise noted. In order to generate an output from the LOGFT code, the evaluator had set the E(parent)=0.0.
[‡] Absolute intensity per 100 decays.

From ENSDF

 $\gamma(^{246}\text{Cm})$

I γ normalization: From $\Sigma I(\gamma + ce)(to 0.0+43 \text{ level}) = 91\% 4$. (I($\gamma + ce$)(42.8 γ) not included in this sum), since I $\beta^-(g.s.) + I\beta(42\text{-keV state}) = 9\% 4$ (1976Ah03).

Uncertainty was not provided by authors (1976Ah03), but was assigned by the evaluator ε (g.s.)<8% from K x ray intensity (1976Ah03).

The evaluator calculated the number of K-shell holes due to internal conversions (0.49 2) and electron captures (69 8). The latter was deduced from ε branchings and theoretical K/ ε ratios for Q+=1350 60 keV. Experimental K-shell fluorescence yield correction of 0.971 6 (1979Ah01) was used in the calculation to determine the total I(K x ray)= 68 % 8 which is in agreement with the measured value 63 % 4 by 1976Ah03.

	Measured x-1	 ay intens	sities	s (1976 <i>i</i>	Ah03))			
Energy	n Inte	ensity	x-ra	ау					
104.6 109.3 123.2 127.1 Σ Ι(K	1 19.0 1 29.0 2 11.0 2 4.0 x ray)=63) 13) 2) 8 3 4 (197	Cm I Cm I Cm I Cm I Cm I	$\begin{array}{c} & \chi \alpha_2 \\ & \chi \alpha_1 \\ & \chi \beta_1' \\ & \zeta \beta_2' \\ & \rbrace \end{array}$					
E_{γ}^{\dagger}	$I_{\gamma}^{\dagger b}$	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [‡]	α^{a}	$I_{(\gamma+ce)}^{b}$	Comments
34.8 [#] 1	0.0084 [@] 7	876.36	3-	841.55	2-	(M1,E2)	1.5×10 ³ 14	12.9 16	$\begin{aligned} &\alpha(L)=1.1\times10^3 \ 10; \ \alpha(M)=3.1\times10^2 \ 28 \\ &\alpha(N)=9.E1 \ 8; \ \alpha(O)=21 \ 19; \ \alpha(P)=3.5 \ 31; \ \alpha(Q)=0.021 \ 7 \\ &\% I\gamma=0.0086 \ 9 \\ &Mult.: \ M:N+O=2.6 \ 2:0.76 \ 8(1976Ah03). \ M1,E2 \ given \ by \ 1976Ah03. \\ &Note \ that \ BrIccMixing \ code \ gives \ a \ high \ reduced \ \chi^2. \\ &I_{(\gamma+ce)}: \ From \ I(ce(M))=2.6 \ 2, \ Ice(N+O)=0.76 \ 8, \ (1976Ah03). \end{aligned}$
42.8 [#]	≈0.085 [@]	42.85	2+	0.0	0+	E2	1070 <i>15</i>	≈91	$ce(L)/(\gamma+ce)=0.723 \ 8; \ ce(M)/(\gamma+ce)=0.204 \ 4$ $ce(N)/(\gamma+ce)=0.0566 \ 11; \ ce(O)/(\gamma+ce)=0.01368 \ 27;$ $ce(P)/(\gamma+ce)=0.00223 \ 4; \ ce(Q)/(\gamma+ce)=5.49\times10^{-6} \ 11$ $\alpha(L)=774 \ 11; \ \alpha(M)=218.1 \ 31$ $\alpha(N)=60.6 \ 8; \ \alpha(O)=14.65 \ 21; \ \alpha(P)=2.393 \ 34; \ \alpha(Q)=0.00587 \ 8$ $\%_{L}\gamma\approx0.087$ $I_{(\gamma+ce)}: \ From \ Ice(L1+L2)\approx35, \ Ice(L3)\approx30, \ Ice(M)=18.5 \ 14, \ and \ Ice(N+O)=7.3 \ 6 \ (1976Ah03).$ Mult: L1+L2:L3 \approx 35:30 (1976Ah03) M:N+O= 18.5 \ 14:7.3 \ 6 \ (1976Ah03).
99.2 [#] 1	0.20 [@] 1	142.06	4+	42.85	2^{+}	E2	19.43 29	4.0 2	$ce(L)/(\gamma+ce)=0.687$ 7; $ce(M)/(\gamma+ce)=0.1943$ 35

						2	246 Bk ε + β^+ de	cay 1976Ah03 (continued)
$\gamma^{(246}$ Cm) (continued)								
E_{γ}^{\dagger}	$I_{\gamma}^{\dagger b}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. [‡]	α^{a}	Comments
			_					$\begin{array}{l} (ce(N)/(\gamma+ce)=0.0541 \ 11; \ ce(O)/(\gamma+ce)=0.01310 \ 27; \ ce(P)/(\gamma+ce)=0.00217 \ 4; \\ ce(Q)/(\gamma+ce)=8.89\times10^{-6} \ 18 \\ \alpha(L)=14.05 \ 21; \ \alpha(M)=3.97 \ 6 \\ \alpha(N)=1.105 \ 16; \ \alpha(O)=0.268 \ 4; \ \alpha(P)=0.0444 \ 7; \ \alpha(Q)=0.0001817 \ 26 \\ \%I\gamma=0.204 \ 17 \\ I_{(\gamma+ce)}: \ From \ Ice(L1+L2)=1.86 \ 14, \ Ice(L3)=1.25 \ 9, \ Ice(M)=0.89 \ 17 \ (1976Ah03). \\ Mult: \ L1+L2:L3:M=1.86 \ 14:1.25 \ 9:0.89 \ 7 \ (1976Ah03). \end{array}$
734.3 1	3.1 2	876.36	3-	142.06	4+	E1	0.00752 11	$\alpha(K) = 0.00606 \ 8; \ \alpha(L) = 0.001100 \ 15; \ \alpha(M) = 0.000265 \ 4$ $\alpha(N) = 7.22 \times 10^{-5} \ 10; \ \alpha(O) = 1.825 \times 10^{-5} \ 26; \ \alpha(P) = 3.52 \times 10^{-6} \ 5; \ \alpha(Q) = 2.327 \times 10^{-7} \ 33$ $\%_{I\gamma} = 3.16 \ 30$ Mult.: $\alpha(K) \exp = 0.0061, \alpha(L1 + L2) \exp = 0.0013, \ K:L1 + L2 = 0.019 \ 13:0.004 \ 1$ $(1976 \Delta h03); \ \alpha(K) \exp = 0.01 \ (1966 Or01)$
798.7 1	61 4	841.55	2-	42.85	2+	E1	0.00648 9	$\alpha(K) = 0.00523 7; \ \alpha(L) = 0.000941 \ I3; \ \alpha(M) = 0.0002260 \ 32$ $\alpha(N) = 6.17 \times 10^{-5} 9; \ \alpha(O) = 1.560 \times 10^{-5} 22; \ \alpha(P) = 3.01 \times 10^{-6} \ 4; \ \alpha(Q) = 2.017 \times 10^{-7} \ 28$ $\% I\gamma = 62 \ 6$ Mult.: K:L1+L2:L3: $\alpha(K) \exp:\alpha(L1+L2)\exp:\alpha(L3)\exp:K/L= 0.32 \ 2:0.055 \ 4:0.005$ $I:0 \ 0.0052:0 \ 0.0009:0 \ 0.00081:\approx 5.2.$
833.5 1	5.0 3	876.36	3-	42.85	2+	E1	0.00601 8	$\alpha(K)=0.00486\ 7;\ \alpha(L)=0.000870\ 12;\ \alpha(M)=0.0002088\ 29$ $\alpha(N)=5.70\times10^{-5}\ 8;\ \alpha(O)=1.443\times10^{-5}\ 20;\ \alpha(P)=2.79\times10^{-6}\ 4;\ \alpha(Q)=1.876\times10^{-7}\ 26$ $\%I\gamma=5.1\ 5$ Mult: $\alpha(K)\exp=0.0052\ (1976Ab03);\ \alpha(K)\exp 0.004\ 2\ (1966Or01)$
982.2 2	0.22 2	1124.28	2+	142.06	4+	[E2]	0.01428 20	$\alpha(\mathbf{K})=0.0042 \ 15; \ \alpha(\mathbf{L})=0.00287 \ 4; \ \alpha(\mathbf{M})=0.000727 \ 10$ $\alpha(\mathbf{N})=0.0002001 \ 28; \ \alpha(\mathbf{O})=5.02\times10^{-5} \ 7; \ \alpha(\mathbf{P})=9.51\times10^{-6} \ 13; \ \alpha(\mathbf{Q})=5.00\times10^{-7} \ 7$
986.03 4	0.26 3	1128.09	3-	142.06	4+	(E1)	0.00449 6	%Iy=0.27 4 %Iy=0.27 4 $\alpha(K)=0.00364 5; \alpha(L)=0.000642 9; \alpha(M)=0.0001539 22$ $\alpha(N)=4.20\times10^{-5} 6; \alpha(O)=1.064\times10^{-5} 15; \alpha(P)=2.065\times10^{-6} 29; \alpha(Q)=1.417\times10^{-7} 20$ E_{γ} ,Mult.: From Adopted Gammas. Mult: $\alpha(K)\exp<0.008$ (1966Or01)
1023.4 2	0.15 2	1165.49	3+	142.06	4+	[E2]	0.01321 18	$\begin{aligned} \alpha(\mathbf{K}) = 0.00971 \ 14; \ \alpha(\mathbf{L}) = 0.00260 \ 4; \ \alpha(\mathbf{M}) = 0.000657 \ 9 \\ \alpha(\mathbf{N}) = 0.0001808 \ 25; \ \alpha(\mathbf{O}) = 4.54 \times 10^{-5} \ 6; \ \alpha(\mathbf{P}) = 8.62 \times 10^{-6} \ 12; \ \alpha(\mathbf{Q}) = 4.63 \times 10^{-7} \ 6 \\ \varphi_{\mathbf{L}\mathbf{V}} = 0.153 \ 23 \end{aligned}$
1036.0 <i>I</i>	1.75 <i>13</i>	1078.83	1-	42.85	2+	E1	0.00412 6	$\alpha(K)=0.003345; \alpha(L)=0.0005888; \alpha(M)=0.000140920$ $\alpha(N)=3.84\times10^{-5}5; \alpha(O)=9.75\times10^{-6}14; \alpha(P)=1.893\times10^{-6}27; \alpha(Q)=1.306\times10^{-7}18$ %Iy=1.7918
1062.0 <i>1</i>	2.9 2	1104.85	2-	42.85	2+	E1	0.00395 6	Mult.: $\alpha(K)\exp=0.0037 (1976Ah03); \alpha(K)\exp\leq0.003 (1966Or01).$ $\alpha(K)=0.00320 4; \alpha(L)=0.000563 8; \alpha(M)=0.0001348 19$ $\alpha(N)=3.68\times10^{-5} 5; \alpha(O)=9.33\times10^{-6} 13; \alpha(P)=1.813\times10^{-6} 25; \alpha(Q)=1.254\times10^{-7} 18$ $\%_{I\gamma}=2.96 29$
1078.8 <i>1</i>	3.7 3	1078.83	1-	0.0	0+	E1	0.00385 5	Mult.: $\alpha(K)\exp=0.0029$ (1976Ah03); $\alpha(K)\exp\leq0.003$ (1966Or01). $\alpha(K)=0.00312$ 4; $\alpha(L)=0.000548$ 8; $\alpha(M)=0.0001311$ 18

4

L

²⁴⁶Bk $\varepsilon + \beta^+$ decay 1976Ah03 (continued) γ ⁽²⁴⁶Cm) (continued) $I_{\gamma}^{\dagger b}$ E α^{a} Mult.[‡] E_i (level) J_{\cdot}^{π} \mathbf{E}_{f} J_{c}^{π} Comments $\alpha(N)=3.58\times10^{-5}$ 5; $\alpha(O)=9.07\times10^{-6}$ 13; $\alpha(P)=1.764\times10^{-6}$ 25; $\alpha(O)=1.222\times10^{-7}$ 17 $\%I_{\nu=3.84}$ Mult.: α (K)exp=0.0041 (1976Ah03); α (K)exp≤0.003 (1966Or01). 1081.4 1 42.85 2+ 0.01190 17 $\alpha(K)=0.00884$ 12; $\alpha(L)=0.002286$ 32; $\alpha(M)=0.000575$ 8 5.8 4 1124.28 2^{+} E2 α (N)=0.0001581 22; α (O)=3.98×10⁻⁵ 6; α (P)=7.57×10⁻⁶ 11; α (Q)=4.17×10⁻⁷ 6 $\%I\gamma = 5.96$ Mult.: α (K)exp=0.0093 (1976Ah03); α (K)exp=0.008 3 (1966Or01); K/L \approx 3.9 (1966Or01). $1122.64^{\&} 6 \quad 0.38^{\&} 7 \quad 1165.49$ 3+ 42.85 2+ E2 0.01110 *16* α (K)=0.00829 *12*; α (L)=0.002097 *29*; α (M)=0.000526 *7* α (N)=0.0001446 20; α (O)=3.64×10⁻⁵ 5; α (P)=6.94×10⁻⁶ 10; α (O)=3.89×10⁻⁷ 5 α (IPF)=2.167×10⁻⁷ 31 %Iy=0.39 8 E_{γ} : From Adopted Gammas. 1124.3[&] 1 4.4 & 3 $\alpha(K)=0.00827$ 12; $\alpha(L)=0.002090$ 29; $\alpha(M)=0.000524$ 7 1124.28 2^{+} 0.0 0^{+} E2 0.01107 15 $\alpha(N)=0.0001441\ 20;\ \alpha(O)=3.63\times10^{-5}\ 5;\ \alpha(P)=6.92\times10^{-6}\ 10;\ \alpha(O)=3.88\times10^{-7}\ 5$ α (IPF)=2.328×10⁻⁷ 34 $\%I_{\gamma=4.54}$ Mult.: α(K)exp=0.0085, K:L1+L2=0.041 3:0.0078 12 (1976Ah03).

[†] From 1976Ah03, unless otherwise noted.

[‡] From Adopted Gammas. α and ce-ratios from 1976Ah03 are given in comments. Normalization of I(ce) to I γ not stated (1976Ah03); normalized to α (K)(799 γ ,E1)=0.00524 (1966Or01).

[#] Observed in ce spectrum only (1976Ah03).

[@] Deduced by the evaluator from I(γ +ce) and α .

& The 1124.3γ appears to be a doublet from ²⁴⁶Am (25 min) decay. From ²⁴⁶Am (25 min) decay Iγ(1122.64)/Iγ(1023.44)=2.5 *3*, the evaluator deduced Iγ(1122.64)=0.38 7 at E=1165-keV level and Iγ(1124.3)=4.4 *3* at E=1124-keV level.

^a Additional information 1.

S

^b For absolute intensity per 100 decays, multiply by 1.02 7.

²⁴⁶Bk ε decay 1976Ah03

Decay Scheme

6